Московский Государственный Университет имени М.В. Ломоносова

Геологический факультет

На правах рукописи

КОПТЕВ АЛЕКСАНДР ИГОРЕВИЧ

НАПРЯЖЕННОЕ СОСТОЯНИЕ ЛИТОСФЕРЫ ЗЕМЛИ ПО РЕЗУЛЬТАТАМ МОДЕЛИРОВАНИЯ

Специальность 25.00.03 – Геотектоника и геодинамика

Диссертация на соискание ученой степени

кандидата геолого-минералогических наук

Научный руководитель:

доктор геол.-мин. наук ГОНЧАРОВ МИХАИЛ АДРИАНОВИЧ

Москва – 2011

СОДЕРЖАНИЕ

Введение	4
Глава 1. Моделирование напряжений в литосфере Земли:	
Современное состояние проблемы	9
Глава 2. Методика расчета поля напряжений	14
2.1. Основной цикл расчетов	16
2.2. Геометрия расчетной сетки	20
2.2.1. Расчетная сетка 2d-модели	20
2.2.2. Расчетная сетка 3d-модели	25
2.3. Численное дифференцирование с использованием теоремы о градиенте	
и дивергенции	28
2.3.1. Численное дифференцирование в 2d-модели	28
2.3.2. Численное дифференцирование в 3d-модели	33
2.4. Выбор величины шага по времени	36
2.5. Учет сферичности расчетной сетки	37
2.6. Учет границ плит и разрывных нарушений	39
Глава 3. Свойства литосферы и движущие силы тектоники плит	41
3.1. Понятие литосферы и ее термальной мощности	41
3.2. Методика расчета термальной мощности литосферы	42
3.3. Результаты расчетов термальной мощности литосферы	62
3.4. Прочность литосферы	79
3.5. Принцип оценки сил разности гравитационного потенциала (обобщен-	
ных топографических сил)	83
3.6. Методика расчета литосферных складок	85

Глава 4. Результаты глобального моделирования							90
4.1.	Интерполяция	И	экстраполяция	данных	«Мировой	Карты	
Напря	яжений»						91
4.2. Рассчитанные модели глобального поля напряжений							102
4.3. Сопоставление результатов расчетов с фактическими данными							113
Глава 5. Результаты регионального моделирования							133
5.1. Черноморско-Кавказско-Каспийский регион							134
5.2. E	5.2. Европейский регион						
Заключе	ние	••••					165
Список литературы							169

Введение

Актуальность работы. В качестве главных источников современного поля напряжений в литосфере Земли обычно рассматривают три типа сил: силы разности гравитационного потенциала, или обобщенные топографические силы (силы, вызванные рельефом и плотностными неоднородностями внутри литосферы), силы затягивания в зонах субдукции (силы, связанные с погружением океанической литосферной плиты), силы мантийных течений (силы, вызванные воздействием на литосферу течений вещества под ее основанием вследствие конвекции в мантии). На современном этапе исследований относительной роли этих сил в формировании напряжений наметилось некоторое противоречие между результатами регионального и глобального моделирования. Результаты региональных работ в большинстве своем указывает на преобладающую роль сил разности гравитационного потенциала (Richardson, Reding, 1991; Coblentz, Sandiford, 1994; Sandiford et al., 1995; Coblentz et al., 1995, 1998; Coblentz, Richardson, 1996; Reynolds et al., 2002), а глобальных – наоборот, на доминирование сил мантийных течений (Bird, 1998; Lithgow-Bertelloni, Guynn, 2004). Для решения этого противоречия необходимо глобальное моделирование, в рамках которого с высокой степенью детальности и с учетом большого количества исходной информации произведена оценка сил гравитационных неоднородностей, а также выполнен расчет поля напряжений, возникающих вследствие действия этих сил. Помимо этого целесообразно провести и региональное моделирование, которое за счет своей большей детальности позволяет зафиксировать особенности моделируемых полей, не заметные при более грубом разрешении. Производительная мощность современной вычислительной техники позволяет в разумные сроки произвести соответствующие расчеты, а опубликованные данные – получить необходимую для этих расчетов входную информацию. Сравнение результатов расчетов с фактическими данными становится все более эффективным способом оценки качества моделей в связи с ростом количества замеров литосферных напряжений.

Моделирование напряженного состояния литосферы Земли является крайне важной задачей, позволяющей приблизится к правильному пониманию относительной роли движущих сил тектоники плит.

Цель работы: оценка роли сил разности гравитационного потенциала в формировании современного распределения напряжений в литосфере Земли с помощью численного моделирования.

Степень соответствия полученного таким образом модельного поля напряжений данным «Мировой Карты Напряжений» (Heidbach et al., 2008) позволяет оценить величи-

ну вклада сил разности гравитационного потенциала в существующее в литосфере распределение напряжений. Если уровень совпадения рассчитанных и наблюдаемых данных низкий, то роль обобщенных топографических сил в образовании поля напряжений незначительная. Если же соответствие между модельным и фактическим распределениями удовлетворительное, то силы, вызванные плотностными неоднородностями в литосфере, можно считать доминирующими с точки зрения формирования современного напряженного состояния.

Исходя из сказанного выше, достижение поставленной цели предполагает решение следующих основных задач:

1. Разработка алгоритма для расчета распределения напряжений (трехмерного, двумерного на плоскости и двумерного на сферической поверхности) и его реализация в действующем программном коде;

2. Построение трехмерной модели распределения температур и плотностей в литосфере Земли с использованием имеющихся данных по топографии, структуре земной коры, возрасте океанического дна, гравитационным аномалиям, температуре на поверхности Земли;

3. Количественная оценка сил разности гравитационного потенциала (обобщенных топографических сил) на базе рассчитанной температурно-плотностной модели литосферы;

4. Расчет модельных полей напряжений в литосфере Земли при различных граничных условиях и параметрах среды и сопоставление полученных распределений с фактическими данными по напряженному состоянию в литосфере Земли (или с результатами визуальной и/или статистической обработки этих данных);

5. Расчет региональных моделей распределений напряжений и порожденных этими напряжениями литосферных складок упругого изгиба.

Фактический материал. В качестве исходных в настоящей работе были использованы следующие имеющиеся в свободном доступе данные:

1. цифровая модель рельефа ETOPO5 (National Geophysical Data Center, 1988);

2. структурно-вещественный состав земной коры по данным глобальной модели CRUST 2.0 (Bassin et al., 2000; Mooney et al., 1998) и модели для Европейского региона EuCRUST-07 (Tesauro et al., 2008);

3. гравитационные аномалии (гравитационная модель EGM96 (Lemoine et al., 1998));

4. возраст океанического дна (Muller et al., 1997);

5. распределение среднегодовых температур на поверхности Земли (Leemans et al., 1991; Lieth et al., 1972);

6. положение и геотектонический тип границ литосферных плит (Bird, 2003);

7. современное напряженное состояние литосферы по данным международного исследовательского проекта «Мировая Карта Напряжений» (World Stress Map, WSM) (Zoback et al., 1989; Zoback, Zoback, 1989; Zoback, Zoback, 1991; Zoback, 1992; Heidbach et al., 2004; Heidbach et al., 2007; Heidbach et al., 2008).

Научная новизна работы:

1. Для расчетов глобальных и региональных полей напряжений предложен оригинальный алгоритм количественной оценки распределения напряжений в трехмерном и двумерном (на плоскости и на сфере) пространстве, который основан на методе конечных объемов с использованием явной консервативной численной схемы в Лагранжевых координатах;

2. При расчетах распределения температур в литосфере Земли была введена изостатическая поправка, позволяющая снизить степень влияния на итоговый результат таких факторов как нестационарность теплового режима, неточность знаний о величине поверхностного теплового потока, коэффициента теплопроводности и параметров, определяющих теплогенерацию пород;

3. На основании рассчитанного распределения температур получена глобальная модель термальной мощности литосферы Земли (разница между абсолютной отметкой изотермы 1300°С и дневной поверхностью);

4. Рассчитана глобальная модель распределения напряжений, возникающих в результате действия обобщенных топографических сил, вычисленных с использованием широкого спектра входных данных;

5. На примере глобальной модели показана существенная роль сил разности гравитационного потенциала в формировании современного поля напряжений;

6. Показана реальность модели упругого изгиба литосферы, возникающего вследствие действия тектонических напряжений, для объяснения быстрого плиоценчетвертичного погружения Восточно-Черноморской и Южно-Каспийской впадин.

Практическое значение работы:

1. Предложенная методология и технология моделирования полей напряжений может быть использована для изучения катастрофических событий, непосредственно связанных с напряженно-деформированным состоянием литосферы, с учетом дополнительной информации о входных параметрах расчетов для конкретных сейсмоопасных территорий;

2. Данные глобального и регионального моделирования поля напряжений могут быть использованы в качестве граничных условий при построении более детальных трехмерных моделей околоскважинного пространства, разрабатываемых месторождений углеводородов, горных выработок (карьеров, шахт) и пр.;

3. Разработанные алгоритмы и методики представляют собой полезный вычислительный инструмент для построения моделей напряженного состояния.

Защищаемые положения работы:

1. Разработан и реализован в программном коде «*Earth Stresses*» оригинальный алгоритм расчета поля напряжений, основанный на методе конечных объемов с использованием явной консервативной численной схемы в Лагранжевых координатах, в трехмерном и двумерном (на плоскости и на сфере) пространстве;

2. Предложена методика и выполнен расчет термальной мощности литосферы Земли, в которой нашли свое отражение все главные тектонические структуры земной коры и литосферы;

3. Поле напряжений, рассчитанное как результат действия сил разности гравитационного потенциала, в главных своих особенностях соответствует современному напряженному состоянию литосферы Земли;

4. Быстрое плиоцен-четвертичное погружение Восточно-Черноморского и Южно-Каспийского бассейна может быть объяснено в рамках модели упругого изгиба литосферы, возникающего в результате воздействия тектонических напряжений.

Публикации и апробация работы. Основные положения и разделы диссертации опубликованы в 18 работах, в том числе в 3 статьях в реферируемых журналах. Результаты исследований докладывались на конференциях и совещаниях различного уровня: XLIII Международном Тектоническом совещании «Тектоника и геодинамика складчатых поясов и платформ фанерозоя» (Москва, 2010); международной конференции, посвященной памяти В.Е. Хаина "Современное состояние наук о Земле" (Москва, 2011); Международной конференции студентов, аспирантов и молодых ученых «Ломоносов» (Москва, 2009; Москва, 2010; Москва, 2011); российской конференции студентов, аспирантов и молодых ученых, посвященной «Году Планеты Земля» «Планета Земля: актуальные вопросы геологии глазами молодых ученых» (Москва, 2009); международной конференции, посвященной «Мировой Карте Напряжений» (Потсдам, Германия, 2008); Генеральной Ассамблее Европейского Союза Наук о Земле (Вена, Австрия, 2010); Ежегодной европейской конференции Американской Ассоциации Нефтяных Геологов (Киев, 2010). Структура и объем диссертации. Диссертация состоит из введения, 5 глав и заключения. Она имеет объем 181 страницу, включая 115 иллюстраций и 1 таблицу. Список использованной литературы включает 161 название.

Благодарности. Автор выражает искреннюю благодарность доценту кафедры региональной геологии и истории Земли геологического факультета МГУ им. М.В. Ломоносова, кандидату геол.-мин. наук Андрею Викторовичу Ершову за постоянные консультации и помощь на всех этапах выполнения данной работы; доценту кафедры динамической геологии геологического факультета МГУ им. М.В. Ломоносова, кандидату физ.-мат. наук Владимиру Сергеевичу Захарову за продуктивное сотрудничество при написании работы; главному научному сотруднику ИФЗ им. О.Ю. Шмидта РАН, доктору физ.-мат. наук Шамилю Ахмедовичу Мухамедиеву за плодотворные дискуссии и замечания, высказанные при рецензировании статьи по теме работы; доценту кафедры региональной геологии и истории Земли геологического факультета МГУ им. М.В. Ломоносова, кандидату геол.мин. наук Максиму Валерьевичу Коротаеву за внимание и поддержку.

Также хочется поблагодарить заведующего кафедрой динамической геологии, профессора, доктора геол.-мин. наук Николая Владимировича Короновского и заведующего кафедрой региональной геологии и истории Земли, профессора, доктора геол.-мин. наук Анатолия Михайловича Никишина за постоянное благожелательное внимание к работе.

Выражаю признательность моему научному руководителю, заведующему лабораторией тектонофизики и геотектоники им. В.В. Белоусова кафедры динамической геологии, доктору геол.-мин. наук Михаилу Адриановичу Гончарову за всестороннюю поддержку при подготовке работы.

Особая благодарность моему первому наставнику Всеволоду Николаевичу Вадковскому[†], открывшему мне дорогу в мир науки.

В заключение хочу выразить благодарность всем сотрудникам кафедры динамической геологии и кафедры региональной геологии и истории Земли геологического факультета МГУ, которые всегда очень доброжелательно относились ко мне и моим исследованиям.

Глава 1. Моделирование напряжений в литосфере Земли: современное состояние проблемы

Источниками напряжений литосферы Земли являются те же силы, что и приводят в движение литосферные плиты. Интерпретация природы этих сил менялась со временем. В ранних моделях тектоники литосферных плит основная причина движения литосферных плит виделась в мантийной конвекции, которая воздействовала на литосферные плиты за счет сил вязкого сцеплении на границе литосфера-астеносфера (Уеда, 1980).

В дальнейшем пришло понимание того, что источник движения плит может лежать в них самих. Вариации мощности коровых слоев в совокупности с плотностными неоднородностям, возникающими вследствие гетерогенности термального режима и состава, обуславливают возникновение сил, стремящихся уничтожить эти неоднородности и привести систему в более однородное состояние, характеризуемое меньшими значениями потенциальной энергии. К этим силам относятся так называемая сила сползания с хребта, определяемая термальной неоднородностью под срединными хребтами, силы гравитационного растекания утолщенной коры горных поясов, силы растекания в областях термальных сводов и др. Методика количественной оценки величины такого рода сил как разности вертикальных интегралов литостатического давления в латерально разнесенных колонках была предложена в работах (Frank, 1972; Artyushkov, 1973). Кроме того, плита испытывает действие так называемой силы затягивания в желоб, возникающей вследствие гравитационной неустойчивости сравнительно холодной и, следовательно, более плотной океанической литосферы погружающейся плиты (Forsyth, Uyeda, 1975).

Соотношения между этими двумя типами сил «самодвижущейся» литосферы поразному оценивались в количественных моделях Дж. Харпера (Harper, 1975), предполагавшего, что силы затягивания в желоб значительно превышают силы отталкивания от хребта, и Д. Форсайта и С. Уеды (Forsyth, Uyeda, 1975), утверждавших, что сила отрицательной плавучести слэба практически уравновешивается силами сопротивления со стороны вмещающей мантии. Существенным недостатком обеих этих моделей (Harper, 1975; Forsyth, Uyeda, 1975) была невозможность оценки распределения напряжений в литосферных плитах, поскольку они полагались абсолютно жесткими.

Первые глобальные модели поля напряжений в литосфере Земли были рассчитаны С.Соломоном, Р. Ричардсоном и др. (Solomon et al., 1975; Richardson et al., 1976, 1979). В данных работах было показано, что модельное распределение напряжений, хорошо согласующееся с наблюдаемым, получается при сопоставимых по величинам силах затягивания в желоб и отталкивания от хребта. Влияние мантийной конвекции предполагалось чисто пассивным: мантийные силы выступали только как силы сопротивления, направленные против движения плиты, обеспечивая необходимый баланс сил и моментов.

Тем не менее, в работах конца 70-х – начала 90-х годов двадцатого века доминируют представления о том, что главным источником напряжений являются силы, вызванные гравитационными неоднородностями литосферы Земли (Lister, 1975; Molnar, Tapponier, 1978; Parsons, Ritcher, 1980; Dahlen, 1981; Houseman et al., 1981; England, McKenzie, 1982; Fleitout, Froidevaux, 1983; England, 1987; Molnar, Lyon-Caen, 1988; Zhou, Sandiford, 1992).

Численное моделирование полей напряжений в пределах крупных регионов Земли – Европы (Golke, Coblentz, 1996; Mantovani et al., 2000; Pfiffner et al., 2000; Jimenes-Munt et al., 2001; Marotta et al., 2002; Jimenez-Munt et al., 2003; Marotta et al., 2004). Индо-Австралийской плиты (Sandiford et al., 1995; Coblentz et al., 1995, 1998; Reynolds et al., 2002), Австралийской плиты (Burbidge, 2004), Северо-Американской плиты (Richardson, Reding, 1991; Liu, Bird, 1998; Flesch et al., 2000), Южно-Американской плиты (Coblentz, Richardson, 1996; Meijer et al., 1997), Африканской плиты (Coblentz, Sandiford, 1994), Новой Зеландии (Liu, Bird, 2002), Филиппинского моря (Pacanovsky, 1999) и др. – имело своей целью на примере конкретных областей определить природу имеющихся там напряжений.

В большинстве этих региональных моделей (за исключением работ С. Рейнольдса и др. (Reynolds et al., 2002), Д. Бербиджа (Burbidge, 2004) и З. Лю и П. Берда (Liu, Bird, 2002)) использовалась упругая реологическая модель, мощность литосферы принималась постоянной, а оценка соответствия между расчетными и наблюденными данными была лишь качественной. Причиной возникновения поля напряжений считалось действие сил приложенных к границам моделируемой области. Эти граничные силы подбирались из условия наилучшего соответствия расчетного поля напряжений наблюденным данным и интерпретировались как силы сползания с хребта или силы затягивания в желоб; мантийные силы так же, как и в случае приведенных выше глобальных моделей, предполагались пассивными (Richardson, Reding 1991; Coblentz, Sandiford, 1994; Sandiford et al., 1995; Coblentz et al., 1995, 1998; Coblentz, Richardson, 1996; Reynolds et al., 2002). Работы Д. Бербиджа (Burbidge, 2004) и З. Лю и П. Берда (Liu, Bird, 2002) в этом плане отличаются, так как они в своих моделях в качестве граничных условий использовали задание скоростей движения на границах плит.

В результате данных работ, целью которых было определение относительной роли различных движущих сил тектоники плит в формировании регионального поля напряжений, в целом было установлено, что эта роль сил затягивания в желоб и сил мантийной

конвекции крайне мала, а определяющими поле напряжений являются топографические силы (т.е силы отталкивания от хребта и силы гравитационного растекания континентов). Только С. Рейнольдс и др. (Reynolds et al., 2002), рассчитав множество вариантов и выполнив количественное соотнесение данных расчета с наблюдениями, пришел к противоположному выводу о значительном влиянии на наблюдаемое напряженное состояние также и субдукционных сил.

При сравнении цитированных выше работ следует отметить явное преимущество моделей Д. Бербиджа (Burbidge, 2004) и З. Лю и П. Берда (Liu, Bird, 2002), которые учитывали в своих расчетах термальный режим литосферы (при латерально неизменных теплофизических свойствах литосферы), разрывные нарушения, а также производили количественное определение подошвы литосферы из принципа локальной изостазии и включали в модель неупругое поведение литосферы. Ими производилась оценка роли не только сил отталкивания от хребта и сил затягивания в желоб, но и сил мантийных течений. При этом, в одном случае влияние последних сил было признано незначительным (Liu, Bird, 2002), а в другом – отмечается высокая чувствительность модели к граничным условиям, связанным с силами, действующими на подошве литосферы (Burbidge, 2004). Соответствие модели наблюдениям проверялось исходя из количественной близости расчетных и наблюденных ориентаций главных осей напряжений (по сейсмологическим, геологическим и скважинным данным), скоростей движения плит (по геодезическим данным) и скоростей движения по разломам (по геологическим данным). В результате проведенного количественного анализа авторы пришли к выводу о том, что не существует такой комбинации граничных условий, которая давала бы удовлетворительную сходимость одновременно для всех типов сопоставляемых данных.

Несколько иной подход использован в работах (Galybin, Mukhamediev, 1999; Мухамедиев, 2000; Мухамедиев, Галыбин, 2001; Mukhamediev, 2002; Mukhamediev et al., 2006). Региональное поле напряжений рассчитывается исходя из имеющихся замеров напряжений *in-situ* путем прямого интегрирования уравнений теории упругости при заданном поле траекторий главных напряжений или с помощью специальной формы анализа неклассической краевой задачи теории упругости. Несомненным достоинством этого подхода является полное совпадение рассчитанного поля напряжений с фактическими данными (это является прямым следствием выбранной методики расчета).

Впрочем, сам подход к моделированию регионального поля напряжений обладает одним принципиальным недостатком. Если мы попытаемся сопоставить модели, признанные авторами наилучшими, то увидим, что граничные силы, приложенные на общей гра-

нице плит, но рассчитанные в разных моделях, – значительно различаются. Таким образом, в глобальном плане эти модели не являются взаимно согласованными.

Построение современных глобальных моделей напряженного состояния в литосфере Земли было произведено П. Бердом (Bird, 1998; Bird, Liu, 1999) и К. Литгов-Бертеллони и Дж. Гуином (Lithgow-Bertelloni, Guynn, 2004). Общим выводом данных работ было утверждение о том, что для наилучшего соответствия расчетного поля наблюдаемому необходимо включение в модель мантийных сил, а только топографические силы (силы, вызванные разностью гравитационного потенциала) оказывались неспособными формировать правдоподобное распределение напряжений.

Таким образом, на текущем этапе исследований данной проблемы наблюдается противоречие между результатами глобального и регионального моделирования поля напряжений литосферы Земли. Большинство региональных моделей говорит о том, что только топографических сил достаточно для того, чтобы в пределах допустимой точности объяснить существующее напряженное состояние; глобальные же модели утверждают о необходимости учета мантийных и субдукционных сил.

Для решения этого противоречия в настоящей работе было произведено изучение роли сил разности гравитационного потенциала в формировании глобального поля напряжений. Данное исследование включало в себя несколько этапов.

На первом этапе рассчитывалась трехмерная температурно-плотностная модель литосферы Земли. Эта модель основана на предположении о совпадении подошвы литосферы с изотермой 1300°С (Anderson, Sammis, 1970; Sato et al., 1989) при том, что распределение температур в континентальной литосфере полагалось стационарным, а в океанической – рассчитывалось в рамках модели остывающего полупространства. При этих вычислениях использовались данные по топографии (цифровая модель рельефа ETOPO5), структурно-вещественному составу земной коры (по данным модели CRUST 2.0 (Bassin et al., 2000; Mooney et al., 1998)), гравитационным аномалиям (гравитационная модель EGM96 (Lemoine et al., 1998)), возрасту океанического дна (Muller et al., 1997), распределению среднегодовых температур на поверхности Земли (Leemans et al., 1991; Lieth et al., 1972).

На втором этапе выполнялась количественная оценка обобщенных топографических сил путем расчета разности интегралов распределения по глубине литостатического давления в соседних по латерали областях литосферы. В качестве входных данных при этой оценке выступало полученное на первом этапе распределение плотностей в литосфере. Поскольку силы разности гравитационного потенциала рассчитаны на основе температурно-плотностной модели литосферы, характеризующейся высокой степенью детальности,

хорошим соответствием современным представлениям и полученной на основе большого количества входных данных, можно говорить о более детальной и правильной оценке этих сил по сравнению с работами (Bird, 1998; Bird, Liu, 1999; Lithgow-Bertelloni, Guynn, 2004).

На третьем этапе производилось собственно моделирование поля напряжений в литосфере Земли, возникающих в результате действия вычисленных на предыдущем этапе сил разности гравитационного потенциала, и сравнение полученных результатов с фактическими данными. Расчеты распределения напряжений выполнялись с помощью реализованного в действующем программном коде оригинального алгоритма. Так же как и обобщенные топографические силы, прочность и интегральные величины плотности и модуля Юнга, необходимые в качестве параметров моделируемой среды, были рассчитаны исходя из температурно-плотностной модели литосферы Земли, полученной на первом этапе работы.

В результате проделанной работы было получено поле напряжений, порожденное силами разности потенциальной энергии, которые рассчитаны с гораздо большей степенью детальности по сравнению с использовавшимися в опубликованных ранее глобальных моделях (Bird, 1998; Bird, Liu, 1999; Lithgow-Bertelloni, Guynn, 2004). Сравнение результатов моделей предшественников, поля напряжений, полученного в рамках настоящего исследования, и данных замеров современного напряженного состояния позволяет говорить о том, насколько обоснованы выводы о необходимости привлечения сил мантийных течений и сил затягивания в зонах субдукции для объяснения наблюдаемой картины распределения напряжений.

Таким образом, предлагаемое исследование позволяет приблизиться к разрешению серьезного противоречия в понимании источников литосферных напряжений, возникшего на современном этапе развития науки в области моделирования напряженного состояния литосферы Земли.

Глава 2. Методика расчета поля напряжений

В рамках настоящей работы разработаны и реализованы в действующем программном коде алгоритмы для расчета поля напряжений *s*_{ij} как в двумерном (2d), так и в трехмерном (3d) пространстве. Для моделирования напряженного состояния в литосфере Земли предложен специальный алгоритм для расчетов на сферической оболочке, представляющий собой некоторую модификацию решения плоской двумерной задачи (см. 2.5). При этом методика допускает наличие разрезов на расчетной сетке (оболочке) и предполагает изменяющиеся в пространстве реологические свойства среды.

Поле напряжений s_{ij} рассчитывалось путем численного решения уравнения равновесия

$$\sum_{i=1}^{3} \frac{\partial \boldsymbol{s}_{ij}}{\partial x_i} + F_j = 0.$$
(2.1)

Поле внешних сил F_i задавалось в качестве входных данных для расчетов (в случае моделирования напряжений в литосфере Земли оно рассчитывалось из разности гравитационного потенциала литосферы (см. 3.5)).

Реология среды предполагалась упруго-пластической. Принималось, что полная деформация e_{ii} представляет собой сумму упругой e_{ii}^{e} и неупругой e_{ii}^{r} частей:

$$e_{ij} = e_{ij}^{e} + e_{ij}^{r} . (2.2)$$

Напряжения связаны с упругой деформацией посредством закона Гука для изотропной среды:

$$\boldsymbol{s}_{ij} = \boldsymbol{I} \sum_{k=1}^{3} \boldsymbol{d}_{ij} \, \boldsymbol{e}_{kk}^{e} + 2 \boldsymbol{m} \boldsymbol{e}_{ij}^{e}, \qquad (2.3)$$

с коэффициентами Лямэ (1, m), которые предполагались изменяющимися в разных участках литосферы Земли в зависимости от ее мощности, состава, структуры и температурного состояния.

Пластичность рассчитывалась в рамках теории течения. Связь между тензором напряжений и тензором приращений пластической деформации (и тензором скоростей пластических деформаций) определяется ассоциированным законом пластического течения

$$\boldsymbol{d}\boldsymbol{e}_{ij}^{r} = \boldsymbol{h} \cdot \boldsymbol{d}\boldsymbol{e}_{ij} = \boldsymbol{h} \cdot \frac{1}{E} \Big((1+n) \cdot \boldsymbol{d}\boldsymbol{s}_{ij} - n\boldsymbol{d}_{ij} \boldsymbol{d}\boldsymbol{s}_{kk} \Big), \qquad (2.4)$$

где *Е*,*п* – модуль Юнга и коэффициент Пуассона,

$$\mathbf{h}(\mathbf{s'}_{ij}) = \begin{cases} 0 & \Pi p \mathbf{u} \, \mathbf{s'}_{ij} < \mathbf{s}_{ij}^{\, \alpha} \\ 1 & \Pi p \mathbf{u} \, \mathbf{s'}_{ij} \ge \mathbf{s}_{ij}^{\, \alpha} \end{cases},$$
(2.5)

 s'_{ij} – девиатор тензора напряжений, s''_{ij} – прочность литосферы. В качестве критерия прочности был выбран простейший вид этого уравнения, соответствующий вырожденному критерию прочности Мора-Кулона с нулевым углом внутреннего трения и заданным сцеплением (s''_{ij}). Упругие модули при упругом нагружении и пластической или упругой разгрузке принимаются одинаковыми. Пластическое течение начинается при превышении приложенными напряжениями заданного предела прочности; оно аккомодирует всю деформацию, превышающую пороговое значение. В случае моделирования на литосферной оболочке предел прочности в каждой ее точке определялся также как и упругие модули из реальных свойств литосферы (см. 3.4).

Тензор деформации e_{ij} выражался через смещения u_i обычным образом:

$$\boldsymbol{e}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
(2.6)

Граничными условиями служили поле сил *F_i* (обобщенных топографических при моделировании в литосфере) и напряжения на разрезах (нулевые или зависящие от смещений прилегающих участков).

Уравнение (2.1) количественно решалось методом конечных объемов с использованием явной консервативной численной схемы в Лагранжевых координатах. Расчетная сетка представляла собой набор ячеек гексаэдральной (в случае 3d-модели) и четырехугольной (в случае 2d-модели) формы. При моделировании напряжений в литосфере Земли четырехугольные ячейки покрывали сферу с радиусом 6371 км.

Несмотря на то, что решаемая задача стационарна и, следовательно, ее решение не зависит от времени, при расчете использовалась явная схема, предполагающая решение уравнения равновесия с неравным нулю нестационарным членом

$$\sum_{i=1}^{3} \frac{\partial \boldsymbol{s}_{ij}}{\partial x_{i}} + F_{j} + F_{damp} \left(\frac{\partial u_{j}}{\partial t} \right) = rg \frac{\partial^{2} u_{j}}{\partial t^{2}}$$
(2.7)

Искалось стационарное решение этого уравнения, которое с необходимостью достигается за счет введения вязких демпфирующих сил $F_{\rm damp}$, зависящих от скорости смеще-

ния среды $\frac{\partial u_j}{\partial t}$ и стремящихся к нулю при приближении этих скоростей к нулю. Ускоре-

ния $\frac{\partial^2 u_j}{\partial t^2}$, входящие в правую часть уравнения, и демпфирующие силы стремятся к нулю

при достижении равновесного состояния, и, таким образом, решение уравнения (2.7) совпадает с решением (2.1).

Длительность временного промежутка, в течение которого выполнялся расчет, определялась условием достижения стационарного состояния. Временной шаг выбирался таким, чтобы обеспечить устойчивость численной схемы (см. 2.4).

2.1. Основной цикл расчетов

В ходе расчетов производился циклический пересчет скоростей смещений (u_i) в скорости деформаций (e_{ij}) , скоростей деформаций (e_{ij}) в напряжения (s_{ij}) , напряжений (s_{ij}) , в силы (F_i) , а сил (F_i) обратно в скорости смещений (u_i) . Часть этих величин (скорости смещений (u_i) , силы (F_i)) центрированы в узлах расчетной сетки, а часть (скорости деформаций (e_{ij}) , напряжения (s_{ij}) – в ячейках (рис.2.1).

Пересчет скоростей смещений (u_i) в скорости деформаций (e_{ij}) производился по стандартной следующей из определения деформации формуле

$$\mathbf{e}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).$$
(2.8)

При этом пересчете использовалась теорема Остроградского-Гаусса (теорема о градиенте), позволяющая найти среднее значение $\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle$ величины $\frac{\partial u_i}{\partial x_j}$ по плоской (2d-

модель) или объемной (3d-модель) области.

В случае 2d-модели формула для этого преобразования имеет вид

$$\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle \equiv \frac{1}{A} \iint_A \frac{\partial u_i}{\partial x_j} \cdot dA = \frac{1}{A} \oint_S n_j \cdot u_i \cdot dS, \qquad (2.9a)$$

а в случае 3d-модели:

$$\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle \equiv \frac{1}{V} \iiint_V \frac{\partial u_i}{\partial x_j} \cdot dV = \frac{1}{V} \oiint_A n_j \cdot u_i \cdot dA .$$
(2.96)

Здесь *А* и *V* – площадь и объем области соответственно, n_j – вектор внешней нормали к границе области. Интеграл в правой части уравнений берется по границе области.

Рис.2.1. Общая схема расчета

Напряжения (s_{ij}) вычислялись из скоростей деформаций (e_{ij}) с использованием закона Гука:

$$\boldsymbol{s}_{ij}(t+dt) = \boldsymbol{s}_{ij}(t) + dt \cdot \left(I \sum_{k=1}^{3} \boldsymbol{d}_{ij} \, \boldsymbol{e}_{kk} + 2 \boldsymbol{m} \boldsymbol{e}_{ij} \right),$$
(2.10)

где d_{ij} – символ Кронекера

$$\boldsymbol{d}_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(2.11)

1 и *m* – коэффициенты Лямэ, выражающиеся через модуль Юнга (*E*) и коэффициент Пуассона (*n*) следующим образом (Макклинток Ф., Аргон А., 1970)

$$I = \frac{En}{(1+n)(1-2n)},$$

$$m = \frac{E}{2(1+n)}.$$
(2.12)

Уравнение (2.10) в случае плоско-напряженного состояния (т.е в случае моделирования плоского поля напряжений в разрезе), определяемого условиями

$$s_{33} = s_{23} = s_{13} = 0, \qquad (2.13)$$

принимает вид

$$\boldsymbol{s}_{ij}(t+dt) = \boldsymbol{s}_{ij}(t) + dt \cdot \left(\boldsymbol{I}^* \cdot \sum_{k=1}^{3} \boldsymbol{d}_{ij} \, \boldsymbol{e}_{kk} + 2\boldsymbol{m} \boldsymbol{e}_{ij} \right)$$
(2.14)

где

$$I^* = I \cdot (1 - \frac{1}{2m + 1}).$$
(2.15)

Центрированные в ячейках напряжения (s_{ij}) пересчитывались в узловые силы (F_i) с использованием теоремы о дивергенции для окружающей узел плоской области A'(2d-модель) или объема V'(3d-модель) по формулам

$$\iint_{A'} F_i \cdot dA' = \oint_{S'} s_{ik} \cdot n_k \cdot dS', \qquad (2.16a)$$

$$\iiint_{V'} F_i \cdot dV' = \bigoplus_{A'} S_{ik} \cdot n_k \cdot dA'$$
(2.166)

соответственно, где F_i – узловые силы, n_k – вектор внешней нормали к границе области *A*' или объему *V*'. В правой части уравнений (2.16) подразумевается суммирование по повторяющемуся индексу *k*, принимающему значения 1 и 2 для 2d-модели и 1, 2 и 3 для 3d-модели.

Более детально численная схема для пересчета скоростей смещений (u_i) в скорости деформаций (e_{ij}) и напряжений (s_{ij}) в силы (F_i) по приведенным формулам (2.9) и (2.16) соответственно будет описана ниже.

К рассчитанным по (2.16) узловым силам добавлялись «внешние» силы (для модели напряжений в литосфере Земли это обобщенные топографические силы (см. 3.5)).

Изменение узловых скоростей рассчитывалось исходя из второго закона Ньютона:

$$\frac{\partial u_i}{\partial t} = \frac{F_i + F_{\text{damp}}}{m},\tag{2.17}$$

где m – «масса» ячейки, которая определялась как интеграл плотности r в пределах плоской области A' или объема V', содержащего соответствующий узел, F_{damp} – демпфирующая сила. Использование уравнения (2.17) приводит к возникновению в модели «упругих волн»; чтобы обеспечить их затухание вводилась демпфирующая сила, имитирующая вязкую диссипацию упругой энергии.

Величина демпфирующей силы (F_{damp}) выбиралась следующим образом

$$F_{\text{damp}} = -0.5 \cdot |F_i| \cdot sign(u_i), \qquad (2.18)$$

где $sign(u_i)$ – знак скорости смещения по соответствующему направлению, т.е.

$$F_{\text{damp}} = -0.5 \cdot F_i,$$
 если $u_i > 0;$ (2.19a)

$$F_{\text{damp}} = 0.5 \cdot F_i,$$
 если $u_i < 0.$ (2.196)

Следует отметить, что выбор величины и направления демпфирующей силы не влияет на итоговые распределения напряжений и других расчетных величин (т.к. эта сила пропорциональна ускорению u_i , а по мере приближения к равновесному состоянию величины u_i стремятся к нулю), но только на скорость достижения моделью равновесного состояния (Poliakov et al., 1993).

Смещения узлов (u_i) рассчитывались из скоростей смещений (u_i) на каждом временном шаге

$$u_{i}(t+dt) = u_{i}(t) + u_{i} dt$$
(2.20)

В качестве начальных условий модели использовались нулевые смещения, скорости смещений и напряжения.

Описанный выше цикл расчета производился до тех пор, пока не достигалось равновесное состояние, т.е. состояние, в котором все силы в узлах оказываются полностью уравновешенными. В качестве критерия такого состояния использовалось условие непревышения узловыми силами заданного порогового значения. При расчете чисто упругой задачи, несмотря на то, что, строго говоря, выполняется расчет эволюции системы во времени, нас интересует только ее конечное установившееся состояние.

Упруго-пластические расчеты производились следующим образом. Сперва выполнялся расчет равновесного поля напряжений в рамках чисто упругой модели при заданной конфигурации тектонических и граничных сил. Затем «включалась» пластичность и производился расчет поля напряжений в рамках упруго-пластической модели.

При расчете использовался критерий прочности, сводящийся к выполнению условия непревышения главными компонентами девиатора напряжений прочностей среды на сжатие и растяжение. Для литосферы методика расчета ее прочности приведена в разделе 3.4.

2.2. Геометрия расчетной сетки

В данном разделе подробно рассмотрено устройство расчетных сеток для 2d- и 3dмоделей. Приведено описание индексации узлов и ячеек сетки, соотношения между основной и дополнительной сеткой, порядок нумерации узлов и зон при различных разбиениях в пределах каждой ячейки и пр. Детальное описание структуры расчетной сетки необходимо для последующего объяснения методики расчетов по формулам (2.9) и (2.16).

2.2.1. Расчетная сетка 2d-модели

Расчетная двумерная *сетка* состоит из четырехугольных *ячеек* произвольной формы (рис.2.2). Выбор четырехугольника в качестве элемента расчетной сетки удобен тем, что в этом случае можно ввести единообразную нумерацию *узлов* и ячеек сетки. В дальнейшем узлы и ячейки сетки будут обозначаться парой индексов (i, j), причем индекс ячейки будет совпадать с индексом ее левого нижнего угла. Размерность сетки определяется количеством узлов по направлению X (n_1) и Y (n_2). При этом количество ячеек по этим направлениям будет равно (n_1 -1) и (n_2 -1) соответственно.

Также для расчетов использовалась *дополнительная* сетка (рис.2.3). Узлы этой сетки располагаются в центрах ячеек основной сетки (центр ячейки определяется как точка пересечения ее диагоналей) и на серединах граней ячеек основной сетки. Таким образом, неграничные ячейки дополнительной сетки имеют восьмиугольную форму и узел основной сетки в своем центре. Если размерность основной сетки $n_1 \times n_2$, то размерность дополнительной сетки ($2n_1-1$) × ($2n_2-1$).

Рис.2.2. Расчетная сетка, состоящая из четырехугольных элементов. Ось х направлена слева направо, ось у сверху вниз. Узлы и ячейки нумеруются парой символов (i,j). Нумерация узлов начинается с левого нижнего узла расчетной области

Рис.2.3. Дополнительная сетка (показана пунктиром). Номера узлов дополнительной сетки указаны в квадратных скобках

Как известно (напр. Poliakov et al., 1993), при линейной параметризации деформации в четырехугольных ячейках возникают нефизические моды деформирования элемента, обладающие нулевой энергией (моды типа «песочные часы»). Для устранения данного эффекта прямоугольные ячейки разбивались на треугольные *зоны*, и расчет зональных значений выполнялся для каждой треугольной зоны в отдельности. Для каждой ячейки возможно два альтернативных *разбиения* (рис.2.4). Для того чтобы получить значение какой-либо величины в четырехугольной ячейке необходимо усреднить рассчитанные величины для четырех треугольных зон (по две в каждом разбиении).

Рис.2.4. Способы разбиения четырехугольной ячейки на треугольные зоны и используемые в дальнейшем обозначения этих зон

В дальнейшем треугольные зоны будут обозначаться T_0 , T_1 , T_2 , T_3 , как это показано на рис.2.4. Величины, относящиеся к треугольной зоне, обозначаются верхним индексом в угловых скобках (например, $f^{<1>}$ – значение величины f в треугольной зоне T_1).

Вершины каждого треугольника будут обозначаться N₀, N₁, N₂. Принятый в данной работе *порядок нумерации* вершин треугольников для каждого разбиения показан на рис.2.5, на котором видно, что для каждого треугольника соблюдается нумерация узлов против часовой стрелки.

Рис.2.5. Порядок нумерации вершин треугольников: а – при первом разбиении; б – при втором разбиении. В кружки обведены обозначения для вершин *верхнего* треугольника при каждом разбиении

Рис.2.6. Порядок нумерации величин на сторонах треугольников: а – при первом разбиении; б – при втором разбиении.

В кружки обведены обозначения для величин на сторонах верхнего треугольника при каждом разбиении

Рис.2.7. Порядок нумерации узлов дополнительной сетки в пределах ячейки основной сетки: а – при первом разбиении; б – при втором разбиении. В кружки обведены обозначения для узлов дополнительной сетки

верхнего треугольника при каждом разбиении

Величины, относящиеся к вершинам треугольной зоны, обозначаются верхним индексом в фигурных скобках (например, $f^{(1)}$ – значение величины f в вершине N₁, $x^{(2)}$ – значение координаты x узла, соответствующего вершине N₂).

Исходя из принятого порядка нумерации каждой вершине каждого треугольника каждого разбиения для ячейки (i,j) можно поставить в соответствие индексы узла в сквозной индексации расчетной сетки.

Так, для треугольника, представляющего собой зону T₀ (первое разбиение, нижний треугольник):

 $N_0 - (i+1,j+1); N_1 - (i,j); N_2 - (i+1,j).$

Для зоны T₁ (первое разбиение, верхний треугольник):

 $N_0 - (i+1,j+1); N_1 - (i,j+1); N_2 - (i,j).$

Для зоны T₂ (второе разбиение, нижний треугольник): (2.21)

 $N_0 - (i,j+1); N_1 - (i,j); N_2 - (i+1,j).$

Для зоны T₃ (второе разбиение, верхний треугольник):

 $N_0 - (i+1,j+1); N_1 - (i,j+1); N_2 - (i+1,j).$

Величины, относящиеся к *сторонам* треугольника, обозначаются верхним индексом в круглых скобках (например, $f^{(1)}$ – значение величины f на стороне 1). Порядок соответствующей нумерации приведен на рис.2.6.

На рис.2.7 показан порядок нумерации узлов дополнительной сетки в пределах каждой ячейки основной сетки.

Подобно тому, как это сделано для вершин треугольников ячейки (2.21), каждому узлу дополнительной сетки в условной нумерации текущей ячейки можно поставить в соответствие его индексы в сквозной нумерации сетки:

Зона Т₀ (первое разбиение, нижний треугольник):

$$n_0 - (2(i+1),2j+1); n_1 - (2i+1,2j+1); n_2 - (2i+1,2j).$$

Зона Т₁ (первое разбиение, верхний треугольник):

$$n_0 - (2i+1,2(j+1)); n_1 - (2i,2j+1); n_2 - (2i+1,2j+1).$$

Зона Т₂ (второе разбиение, нижний треугольник):

 $n_0 - (2i+1,2j+1); n_1 - (2i,2j+1); n_2 - (2i+1,2j).$

Зона Т₃ (второе разбиение, верхний треугольник):

 $n_0 - (2(i+1),2j+1); n_1 - (2i+1,2(j+1)); n_2 - (2i+1,2j+1).$

Стоит также отметить, что все приведенные выше порядки нумерации носят исключительно *условный* характер и являются, по сути, не более чем просто договоренностью, соблюдение которой при расчетах позволяет достигнуть желаемого результата. При этом надо иметь в виду, что при принятии любой другой договоренности относительно порядка

(2.22)

нумерации приведенных величин результат не должен получиться другим (при условии, конечно, строгого следования этим условностям).

2.2.2. Расчетная сетка 3d-модели

Расчетная трехмерная *сетка* состоит из восьмиугольных (гексаэдральных) ячеек произвольной формы (рис.2.8а). Узлы и ячейки этой сетки в дальнейшем будут обозначаться тройкой индексов (i, j, k), где индекс i в правой декартовой системе координат соответствует оси X, индекс j - оси Y, индекс k - оси Z. Как и в случае двумерной сетки, количество узлов n_1 , n_2 и n_3 по направлениям соответственно X, Y и Z больше количества ячеек по этим направлениям на единицу.

Порядок нумерации вершин гексаэдральной ячейки показан на рис.2.8а. Согласно этому порядку, для ячейки с индексами (i, j, k) ее узлы будут иметь следующие индексы в сплошной нумерации сетки:

$$0 - (i, j+1, k+1); 1 - (i+1, j+1, k+1); 2 - (i+1, j, k+1); 3 - (i, j, k+1); 4 - (i, j+1, k); 5 - (i+1, j+1, k); 6 - (i+1, j, k+1); 7 - (i, j, k).$$
(2.23)

При этой нумерации индекс ячейки будет совпадать с индексом узла номер 7.

Для устранения нефизических мод деформирования элемента (см. выше) гексаэдральные ячейки разбивались на тетраэдры, в которых и производился расчет зональных значений. Подобно двумерной сетке, для каждой ячейки возможно два различных разбиения (рис.2.9). Под разбиением в данном случае надо понимать способ заполнения восьмиугольной ячейки тетраэдрами таким образом, чтобы они, не пересекаясь, заняли все пространство внутри нее.

На рис.2.9 видно, что для двух разбиений имеется в сумме десять тетраэдральных зон (по пять на каждое разбиение). В случае если ячейка представляет собой частный случай гексаэдра – куб или параллелепипед, четыре из пяти тетраэдров в каждом разбиении будут иметь один прямой трехгранный угол. Такие «прямоугольные» тетраэдры нумеруются согласно номерам вершин гексаэдральной ячейки (см. выше), к которым прилегают прямые углы этих тетраэдров. Таким образом, тетраэдры, «прилегающие» к вершинам гексаэдра будут иметь номера 0, 2, 5 и 7 для первого разбиения и 1, 3, 4 и 6 для второго. Тетраэдральные зоны, не имеющие прямых трехгранных углов (как бы «внутренние» тетраэдры гексаэдра), будут иметь номер 8 для первого разбиения и 9 для второго.

Обозначения величин, относящихся к зонам, граням (и ребрам) этих зон и вершинам не изменились относительно 2d-модели – в угловых, круглых и фигурных скобках соответственно.

Рис.2.8. Порядок нумерации узлов гексаэдральной ячейке (а) и тетраэдральной зоне (б) трехмерной сетки

Рис.2.9. Способы разбиения гексаэдральной ячейки на тетраэдральные зоны

Порядок нумерации вершин тетраэдральных зон можно видеть на рис.2.86. Этот порядок выбран таким образом, что если смотреть на треугольную грань 123 со стороны вершины 0, обход вершин этой грани направлен против часовой стрелки.

Для каждого из десяти тетраэдров, возникающих в результате соответствующих разбиений, номерам его вершин 0, 1, 2 и 3 (по нумерации на рис.2.8б) можно поставить в соответствие номера вершин гексаэдра согласно порядку, приведенному на рис.2.8а. Это сопоставление приведено ниже по следующей схеме: номер тетраэдра (курсивом) – номера его вершин, в сквозной нумерации вершин гексаэдральной ячейки (через запятую). Сначала перечисляются тетраэдры, входящие в первое разбиение, а потом – во второе:

$$0-0, 1, 4, 3; 2-2, 1, 3, 6; 5-5, 1, 6, 4; 7-7, 3, 4, 6; 8-1, 3, 6, 4;$$

$$I - 1, 0, 2, 5; 3 - 3, 0, 7, 2; 4 - 4, 0, 5, 7; 6 - 6, 2, 7, 5; 9 - 0, 2, 5, 7.$$
 (2.24)

Помимо основной сетки при расчетах использовалась *дополнительная* (рис.2.10). Узлы этой сетки располагаются на серединах ребер и граней основной сетки. При размерности основной сетки $n_1 \times n_2 \times n_3$ размерность дополнительной составляет ($2n_1$ -1) × ($2n_2$ -1) × ($2n_3$ -1). Напомним, что под размерностью сетки по тому или иному направления понимается количество узлов.

Ниже для ячейки с индексами (i, j, k) приведено соответствие между условной нумерацией узлов дополнительной сетки в пределах текущей ячейки и их индексами в сквозной нумерации сетки:

$$\begin{array}{l} 0-(2i,2(j+1),2k+1); 1-(2(i+1),2(j+1),2k+1); 2-(2(i+1),2j,2k+1); \\ 3-(2i,2j,2k+1); 4-(2i,2j+1,2(k+1)); 5-(2i+1,2(j+1),2(k+1)); \\ 6-(2(i+1),2j+1,2(k+1)); 7-(2i+1,2j,2(k+1)); 8-(2i+1,2j+1,2(k+1)); \\ 9-(2i,2j+1,2k+1); 10-(2i+1,2(j+1),2k+1); 11-(2(i+1),2j+1,2k+1); \\ 12-(2i+1,2j,2k+1); 13-(2i,2j+1,2k); 14-(2i+1,2(j+1),2k); \end{array}$$

15 - (2(i+1), 2j+1, 2k); 16 - (2i+1, 2j, 2k); 17 - (2i+1, 2j+1, 2k); 18 - (2i+1, 2j+1, 2k+1).

Рис.2.10. Расположение и порядок нумерации узлов дополнительной сетки (показана пунктиром)

2.3.1. Численное дифференцирование в 2d-модели

Как говорилось выше, для пересчета скоростей смещений (и,) в скорости деформа-

ций (
$$e_{ij}$$
) по формуле (2.8) необходимо найти среднее значение $\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle$ величины $\frac{\partial u_i}{\partial x_j}$ по

плоской в случае 2d-модели области. Для этого использовалась теорема Остроградского-Гаусса (теорема о градиенте), согласно которой интеграл по области A частной производной некоторой функции f по направлению x_a равен интегралу по контуру S произведения этой же функции f на проекцию внешней нормали n к этому контуру на ось x_a (n_a):

$$\oint_{S} n_a \cdot f \cdot dS = \iint_{A} \frac{\partial f}{\partial x_a} \cdot dA \,. \tag{2.26}$$

Исходя из соотношения (2.26), можно выразить усредненное по области значение производной от некоторой функции ($\left\langle \frac{\partial f}{\partial x_a} \right\rangle$) через ее значения на границе области. Так, для треугольной области:

$$\left\langle \frac{\partial f}{\partial x_a} \right\rangle \equiv \frac{1}{A} \iint_A \frac{\partial f}{\partial x_a} \cdot dA = \frac{1}{A} \iint_S n_a \cdot f \cdot dS \approx \frac{1}{A} \sum_{i=0}^2 f^{(i)} \cdot n_a^{(i)} \cdot S^{(i)}, \qquad (2.27)$$

где $f^{(i)}$ – значение функции f на *i*-ой стороне треугольника, рассчитываемое как среднее арифметическое между известными значениями функции f на концах этой стороны; $n_a^{(i)}$ – проекция на координатную ось x_a вектора нормали к *i*-ой стороне треугольника, направленного вовне треугольника; $S^{(i)}$ – длина *i*-ой стороны треугольника.

Из элементарных геометрических соображений (рис.2.11) очевидно, что произведение $n_a^{(i)} \cdot S^{(i)}$ может быть рассчитано как

$$n_x^{(i)} S^{(i)} = \Delta y^{(i)},$$

$$n_y^{(i)} S^{(i)} = -\Delta x^{(i)},$$
(2.28)

где

$$\Delta y^{(i)} = y^{\{next\}} - y^{\{pref\}},$$

$$\Delta x^{(i)} = x^{\{next\}} - x^{\{pref\}},$$
(2.29)

где индекс *next* обозначает последующий индекс по направлению обхода, a *pref* – предыдущий. На данном этапе крайне важно соблюдать выбранное направление обхода по вершинам треугольной зоны (см. 2.2.1), т.к. формулы (2.28) верны только для обхода против часовой стрелки, а для обхода по часовой стрелки плюсы в правых частях этих уравнений (2.28) надо поменять на минусы и наоборот.

Рис.2.11. Значения функции в узлах $f^{\{i\}}$ и на гранях $f^{(i)}$ треугольника, нормали к его сторонам $n^{(i)}$ и их проекции на оси $n_a^{(i)}$

Таким образом, формулу (2.27) можно расписать в явном виде следующим образом

$$\left\langle \frac{\partial f}{\partial x} \right\rangle = \frac{1}{2A} ((f^{\{1\}} + f^{\{0\}})(y^{\{1\}} - y^{\{0\}}) + (f^{\{2\}} + f^{\{1\}})(y^{\{2\}} - y^{\{1\}}) + (f^{\{0\}} + f^{\{2\}})(y^{\{0\}} - y^{\{2\}}), \left\langle \frac{\partial f}{\partial y} \right\rangle = \frac{1}{2A} ((f^{\{1\}} + f^{\{0\}})(x^{\{0\}} - x^{\{1\}}) + (f^{\{2\}} + f^{\{1\}})(x^{\{1\}} - x^{\{2\}}) + (f^{\{0\}} + f^{\{2\}})(x^{\{2\}} - x^{\{0\}}),$$

(2.30)

где площадь треугольной зоны А удобно рассчитывать по формуле

$$A = \frac{x^{\{0\}} \cdot (y^{\{1\}} - y^{\{2\}}) + x^{\{1\}} \cdot (y^{\{2\}} - y^{\{0\}}) + x^{\{2\}} \cdot (y^{\{0\}} - y^{\{1\}})}{2}.$$
 (2.31)

Два выражения (2.30) и являются записью теоремы о градиенте в приложении к треугольному элементу. Они позволяют по значениям некоторой величины, заданной в узлах сетки, рассчитать среднее значение ее градиента в треугольной зоне. Отметим, что размерность тензора увеличивается на единицу, т.е. из скаляра получается вектор, из вектора – тензор второго ранга и т.д.

Средние значения скоростей смещений $\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle$ рассчитывались по приведенной ме-

тодике для каждой из четырех треугольных зон (T₀, T₁, T₂, T₃). Далее по формуле (2.8) производился расчет скоростей деформаций (e_{ij}), которые в свою очередь пересчитывались в напряжения (s_{ij}) согласно принятому реологическому закону (в случае упругой задачи использовались уравнения (2.10, 2.14), соответствующие закону Гука). Таким образом, в результате всех этих расчетов имеются напряжения, заданные для четырех треугольных зон в каждой ячейке расчетной сетки ($s_{ij}^{<k>}$).

Для пересчета этих напряжений ($S_{ij}^{<k>}$) в узловые силы (F_i) из соотношения (2.16а) выполнялись следующие действия.

Для каждой k-ой треугольной зоны ячейки производился расчет сил, приложенных к каждой m-ой грани дополнительной частой сетки в пределах данного треугольника – $F_gran_{am}^{<k>}$. Принятый в настоящей работе порядок нумерации граней (m меняется от 0 до 1), на которых рассчитываются эти силы, показан на рис.2.12, а порядок нумерации узлов дополнительной сетки в пределах треугольных зон можно видеть на рис.2.7 (их связь со сквозной индексацией сетки приведена в (2.22)).

Сила $F_{gran_{a_m}}^{<k>}$ рассчитывалась как скалярное произведение напряжения $S_{ab}^{<k>}$ на единичный вектор нормали *n* к грани, умноженное на длину этой грани:

$$F_{am}gran_{am}^{} = S_{aa}^{}n_{am}^{}S_{m}^{} + S_{ab}^{}n_{bm}^{}S_{m}^{}, \qquad (2.32)$$

где аналогично (2.28, 2.29) имеем

$$n_{x}^{\langle k \rangle}{}_{m}S_{m}^{\langle k \rangle} = y^{\{next\}} - y^{\{pref\}} n_{y}^{\langle k \rangle}{}_{m}S_{m}^{\langle k \rangle} = -(x^{\{next\}} - x^{\{pref\}}),$$
(2.33)

где $x_a^{\{next\}}$ и $x_a^{\{pref\}}$ – координаты узлов частой сетки в соответствии с порядком их нумерации в пределах текущей треугольной зоны (рис.2.7).

Рис.2.12. Порядок нумерации граней дополнительной сетки в пределах ячейки основной сетки: а – при первом разбиении; б – при втором разбиении

На рис.2.7 видно, что нумерация узлов дополнительной сетки ведется против часовой стрелки относительно узла ячейки, не являющейся при текущем разбиении соединяющим ее диагонали. Поэтому при расчетах по (2.29) вектор нормали n к граням частой сетки всегда будет направлен вовне четырехугольной зоны, возникающей в каждом треугольнике в результате пересечения граней основной и дополнительной сеток (см. направления стрелок на рис.2.13).

При расчете силы (F_i) в узле основной сетки, производилось суммирование рассчитанных по (2.32) сил на гранях восьмиугольника, ограничивающего закрашенную серым цветом на рис.2.13 область (область интегрирования A' в уравнении (2.16а)), с последующим усреднением результатов по двум разбиениям. При этом силы, которым соответствуют нормали, направленные внутрь области A', брались с отрицательным знаком.

При расчетах узловых скоростей (u_i) по (2.17) «масса» области m, прилегающей к текущему узлу, рассчитывалась как сумма произведений плотностей r, заданных в ячейках, окружающих данных узел, и площадей соответствующих (т.е. входящих в восьмиугольник, окружающий текущий узел) четырехугольных зон в пределах этих ячеек. Это является численным выражением того, что эта «масса» определялась как интеграл плотности r в пределах области A'.

Рис.2.13. Баланс сил для узла (i,j): а – при первом разбиении; б – при втором разбиении. Черными стрелками показаны нормали к тем граням частой сетки, к которым приложены силы, участвующие в балансе сил для текущего узла

При расчетах 3d-модели скорости деформаций (e_{ij}) могут быть получены из скоро-

стей смещений (u_i) путем предварительного вычисления среднего значения $\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle$ ве-

личины $\frac{\partial u_i}{\partial x_j}$ по объемной области зоны. Теорема Остроградского-Гаусса в этом случае формулируется следующим образом – интеграл по объему V частной производной некоторой функции f по направлению x_a равен интегралу по поверхности объема A произведения этой же функции f на проекцию внешней нормали n к этой поверхности на ось $x_a(n_a)$:

$$\oint_{A} n_{a} \cdot f \cdot dA = \iiint_{V} \frac{\partial f}{\partial x_{a}} \cdot dV .$$
(2.34)

Из (2.34) для тетраэдральной зоны имеем

$$\left\langle \frac{\partial f}{\partial x_a} \right\rangle \equiv \frac{1}{V} \iiint_V \frac{\partial f}{\partial x_a} \cdot dV = \frac{1}{V} \oiint_A n_a \cdot f \cdot dA \approx \frac{1}{V} \sum_{i=0}^4 f^{(i)} \cdot n_a^{(i)} \cdot A^{(i)}, \qquad (2.35)$$

где $n_a^{(i)}$ – проекция на координатную ось x_a вектора нормали к *i*-ой стороне тетраэдра, направленного вовне тетраэдра, $A^{(i)}$ – площадь *i*-ой стороны тетраэдра, $f^{(i)}$ – значение функции f на *i*-ой стороне тетраэдра, рассчитываемое по следующей формуле

$$f^{(i)} = \frac{\sum_{k=0}^{3} f^{(k)} \cdot S^{(k)}}{\sum_{k=0}^{3} S^{(k)}}$$
(2.36)

где $f^{(k)}$ – значение функции f на k-ой стороне треугольника (который является i-ой гранью тетраэдра), рассчитываемое как среднее арифметическое между известными значениями функции f на концах этой стороны, а $S^{(k)}$ – длина этой стороны.

Произведение $n_a^{(i)} \cdot A^{(i)}$ может быть рассчитано как

$$n_x^{(i)} \cdot A^{(i)} = 0.5 \cdot \begin{vmatrix} 1 & y^{\{i,0\}} & z^{\{i,0\}} \\ 1 & y^{\{i,1\}} & z^{\{i,1\}} \\ 1 & y^{\{i,2\}} & z^{\{i,2\}} \end{vmatrix};$$

$$n_{y}^{(i)} \cdot A^{(i)} = 0.5 \cdot \begin{vmatrix} x^{\{i,0\}} & 1 & z^{\{i,0\}} \\ x^{\{i,1\}} & 1 & z^{\{i,1\}} \\ x^{\{i,2\}} & 1 & z^{\{i,2\}} \end{vmatrix};$$
(2.37)
$$n_{z}^{(i)} \cdot A^{(i)} = 0.5 \cdot \begin{vmatrix} x^{\{i,0\}} & y^{\{i,1\}} & 1 \\ x^{\{i,1\}} & y^{\{i,2\}} & 1 \\ x^{\{i,2\}} & y^{\{i,3\}} & 1 \end{vmatrix},$$

где координаты вершин треугольников (граней тетраэдра) $x^{\{i,k\}}$, $y^{\{i,k\}}$ и $z^{\{i,k\}}$ ($x_a^{\{i,k\}}$) связаны с координатами вершин самого тетраэдра $x^{\{k\}}$, $y^{\{k\}}$ и $z^{\{k\}}$ ($x_a^{\{k\}}$) следующим образом:

$$\begin{aligned} x_{a}^{\{0,0\}} &= x_{a}^{\{0\}}; x_{a}^{\{0,1\}} = x_{a}^{\{3\}}; x_{a}^{\{0,2\}} = x_{a}^{\{1\}}; \\ x_{a}^{\{1,0\}} &= x_{a}^{\{0\}}; x_{a}^{\{1,1\}} = x_{a}^{\{1\}}; x_{a}^{\{1,2\}} = x_{a}^{\{2\}}; \\ x_{a}^{\{2,0\}} &= x_{a}^{\{0\}}; x_{a}^{\{2,1\}} = x_{a}^{\{2\}}; x_{a}^{\{2,2\}} = x_{a}^{\{3\}}; \\ x_{a}^{\{3,0\}} &= x_{a}^{\{1\}}; x_{a}^{\{3,1\}} = x_{a}^{\{3\}}; x_{a}^{\{3,2\}} = x_{a}^{\{2\}}. \end{aligned}$$

$$(2.38)$$

Соответствие между номерами вершин тетраэдров и узлами гексаэдральной ячейки приведено в (2.24), а связь между условной нумерацией вершин внутри восьмиугольной ячейки и сквозной индексацией сетки – в (2.23).

Объем тетраэдральной зоны V рассчитывался по формуле

$$V = -\frac{1}{6} \cdot \begin{vmatrix} 1 & x^{\{0\}} & y^{\{0\}} & z^{\{0\}} \\ 1 & x^{\{1\}} & y^{\{1\}} & z^{\{1\}} \\ 1 & x^{\{2\}} & y^{\{2\}} & z^{\{2\}} \\ 1 & x^{\{3\}} & y^{\{3\}} & z^{\{3\}} \end{vmatrix}.$$
 (2.39)

Средние значения скоростей смещений $\left\langle \frac{\partial u_i}{\partial x_j} \right\rangle$, вычисленные для каждой из десяти

тетраэдральных зон пересчитывались в скорости деформаций (e_{ij}), из которых, в свою очередь, по соответствующему реологическому закону определялись напряжения ($s_{ij}^{<k>}$).

Пересчет этих напряжений ($s_{ij}^{<k>}$) в узловые силы (F_i) из соотношения (2.16б) производился следующим образом. Для каждого *k*-го узла текущего гексаэдра рассчитывалась сила $F_gran_a^{\{k\}}$, действующая на *n*-ую треугольную грань внутри *k*-ой тетраэдральной зоны, образованную тройкой узлов дополнительной сетки, из соотношения

$$F_{a}gran_{a}^{\{k\}} = S_{aa}^{\langle m \rangle} n_{a}^{(n)} A^{(n)} + S_{ab}^{\langle m \rangle} n_{b}^{(n)} A^{(n)} + S_{ag}^{\langle m \rangle} n_{g}^{(n)} A^{(n)}.$$
(2.40)

Напряжения $S_{ij}^{<k>}$ на этом этапе расчета уже вычислены, а произведения $n_a^{(n)} \cdot A^{(n)}$ рассчитываются согласно формуле (2.37).

Рис.2.14. Положение узлов частой сетки на фоне первого (а) и второго (б) разбиений гексаэдральной ячейки на тетраэдральные зоны

Для лучшего понимания написанных ниже соотношений, на рис.2.14 показано положение узлов дополнительной сетки на фоне двух способов разбиения на тетраэдры гексаэдральных ячеек.

Отдельно для первого и второго разбиения приведено соответствие между номером узла гексаэдра (курсив), номерами тройки узлов, образующей треугольные грани, на которых рассчитываются силы по формуле (2.40),(через запятую) и номером тетраэдра, внутри которого эта грань располагается (курсив):

1) Первое разбиение:

$$\begin{array}{l} 0-0,5,4-0;\ 2-2,7,6-2;\ 5-1,14,15-5;\ 7-3,16,13-7;\\ 1-5,10,8-0;\ 1-6,8,11-2;\ 1-1,11,10-5;\ 1-8,10,11-8;\\ 3-9,4,8-0;\ 3-7,12,8-2;\ 3-3,9,12-7;\ 3-8,12,9-8;\\ 4-0,9,10-0;\ 4-10,17,14-5;\ 4-9,13,17-7;\ 4-9,17,10-8;\\ 6-2,11,12-1;\ 6-11,15,17-5;\ 6-12,17,16-7;\ 6-11,17,12-8. \end{array}$$

2) Второе разбиение:

$$\begin{split} & l = 1,6,5 - 1; \ 3 - 3,4,7 - 3; \ 4 - 0,13,14 - 4; \ 6 - 2,15,16 - 6; \\ & 0 - 5,8,10 - 1; \ 0 - 4,9,8 - 3; \ 0 - 0,10,9 - 4; \ 0 - 8,9,10 - 9; \\ & 2 - 6,11,8 - 1; \ 2 - 7,8,12 - 3; \ 2 - 2,12,11 - 6; \ 2 - 8,11,12 - 9; \\ & 5 - 1,10,11 - 1; \ 5 - 10,14,17 - 4; \ 5 - 11,17,15 - 6; \ 5 - 10,17,11 - 9; \\ & 7 - 3,12,9 - 3; \ 7 - 9,17,13 - 4; \ 7 - 12,16,17 - 6; \ 7 - 9,12,17 - 9. \end{split}$$

Указанный порядок узлов дополнительной сетки важен, т.к. именно такая последовательность может позволить получить в результате расчетов по формуле (2.37) значение произведения площади грани и проекции на соответствующую ось *внешней* нормали к ней.

Далее расчет силы (F_i), действующей в узле основной сетки, сводился к суммированию всех сил, полученных по формуле (2.40), со стороны всех окружающих данный узел ячеек. Отметим, что для того, чтобы расчетная среда была «сплошной» (без «дырок» и «перекрытий»), первое и второе разбиение применялось к гексаэдральным ячейкам сетки в шахматном порядке. Нарушение «сплошности» среды в случае, если всем ячейкам присвоить первое или второе разбиение связано с тем, что, строго говоря, произвольный набор восьми узлов в общем случае не даст такую геометрическую фигуру как гексаэдр.

«Масса» m области, прилегающей к текущему узлу, рассчитывалась как сумма произведений плотностей r, заданных в ячейках, окружающих данных узел, на объемы тетраздров, вершины которых совпадают с собственно текущим узлом основной сетки и соответствующими тройками узлов дополнительной сетки, приведенными в (2.41).

Важно заметить, что как при 2d-, так и при 3d-моделировании усреднение по двум разбиениям производится после деления полученных в результате суммирования сил на соответствующие массы, а не до.

Цикл вычислений заканчивается вычислением узловых скоростей (*u_i*) путем умножения рассчитанных отношений сил к массам на предварительно выбранный временной шаг (см. 2.4).

2.4. Выбор величины шага по времени

Устойчивость используемой явной схемы зависит от выбора временного шага, который выбирался таким образом, чтобы «сигнал» за один шаг распространялся не далее чем на одну ячейку. Максимальная скорость распространения сигналов в упругой среде (т.е. скорость распространения продольной звуковой волны) равна

$$V_p = \sqrt{\frac{K + \frac{4}{3}G}{r}},\tag{2.42}$$

где V_p – скорость распространения продольных волн, K – объемный модуль, G – модуль сдвига, а r – плотность. Таким образом, временной шаг определяется соотношением:
$$dt < \frac{dl}{V_p} = dl \sqrt{\frac{r}{K + \frac{4}{3}G}},$$
(2.43)

где dl – наименьшее расстояние в ячейке. В случае 2d-модели, его можно оценить как отношение удвоенной площади треугольной зоны к длине ее наибольшей стороны (учитывая, что площадь треугольника равна половине произведения на высоту, а наименьшая из трех высот – и есть наименьшее расстояние в треугольнике):

$$dl = \frac{2A}{S_{\max}},\tag{2.44}$$

где *А* – площадь треугольника, *S_{max}* – длина его наибольшей стороны.

При трехмерных расчетах минимальное расстояние в ячейке определялось следующим образом. Сначала для каждого тетраэдра, возникшего в результате разбиения ячейки, рассчитывалось отношение его объема к максимальной площади его сторон, а потом выбиралось минимальное из таких отношений.

Объемный модуль К и модуль сдвига G выражаются через коэффициенты Лямэ как

$$K = l + \frac{2}{3}m$$
 (2.45,a)

$$G = m \tag{2.46,6}$$

Из (2.43), (2.44) и (2.45) имеем

$$dt < \frac{dl}{V_p} = \frac{2A}{S_{\max}} \sqrt{\frac{r}{l+2m}}$$
(2.47)

2.5. Учет сферичности расчетной сетки

Расчетная сетка 2d-модели была задана на сфере, ячейки имели четырехугольную форму (за исключением прилегающих к полюсам, которые имели треугольную форму).

Сферичность расчетной сетки учитывалась следующим образом. Значения, центрированные в узлах, рассчитывались в локальной плоской системе координат, в которой плоскость xy является касательной к сфере в данном узле, а центрированные в ячейках – в системе координат, плоскость xy которой является касательной в центре ячейки. Причем как в первом, так и во втором случае ось x направлена по параллелям на восток, ось y – по меридианам на север, а ось z – по радиусу от центра сферы.

Переход между локальными системами координат сводился к переходу от системы координат x'y'z' с центром в точке с координатами l' и j' к системе координат x''y''z'' с

центром в точке с координатами l'' и j'' (l – долгота и j – широта). Это преобразование производилось через переход к промежуточной системе координат *хуz* с началом координат в центре сферы. Плоскость *ху* данной системы координат лежит в плоскости экватора (причем ось *x* направлена к меридиану, соответствующему долготе 0°, а ось *y* – 90°), а ось *z* совпадает с осью Земли (проходит через ее полюса) и направлена к северному полюсу (рис.2.15).

Переход от системы координат x'y'z' к системе координат xyz производился посредством умножения преобразовываемого вектора на матрицу поворота:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\sin l' & -\cos l' \sin j' & \cos l' \cos j' \\ \cos l' & -\sin l' \sin j' & \sin l' \cos j' \\ 0 & \cos j' & \sin j' \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}.$$
(2.48)

Рис.2.15. Системы координат, используемые для учета сферичности расчетной сетки

Преобразование

$$\begin{pmatrix} x'' \\ y'' \\ z'' \end{pmatrix} = \begin{pmatrix} -\sin l \, '' \, \cos l \, '' \, 0 \\ -\sin j \, '' \cos l \, '' \, -\sin j \, '' \sin l \, '' \, \cos j \, '' \\ \cos j \, '' \cos l \, '' \, \cos j \, '' \sin l \, '' \, \sin j \, '' \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
(2.49)

позволяет перейти из системы координат xyz в систему координат x''y''z''.

Повороты тензоров производились в целом аналогично, но вместо матричных преобразований использовалась следующая формула:

$$p_{kl} = \sum_{r=1}^{3} \sum_{s=1}^{3} a_{kr} a_{ls} p_{rs}, \qquad (2.38)$$

где p_{kl} – текущий элемент тензора, получаемого в процессе пересчета; p – исходный тензор; a_{kr} и a_{ls} – соответствующие элементы используемой матрицы поворота (Кочин, 1965).

Z -компонентой векторов и тензоров, возникающей при таких пересчетах, пренебрегаем.

В ходе расчетов геометрия сетки изменялась в виду того, что происходило смещение узлов сетки. Поэтому на каждом шаге расчета производился контроль геометрической корректности. Проверялось, чтобы минимальная длина стороны ячейки (S_{min}) не была бы меньше чем $1/5 \sqrt{A}$. В случае, если это условие нарушено, генерировалась новая сетка, т.е. производился ремешинг.

2.6. Учет границ плит и разрывных нарушений

Метод допускает возможность «разрезания» сетки вдоль границ ячеек. Для узлов, лежащих на линии «разреза», специально задавался коэффициент, показывающий степень влияния центрированных в ячейках величин (напряжений и пр.) в ячейках по другую сторону «разреза» на расчет величин, центрированных в таких узлах (скорости смещений, силы и пр.). Таким образом, при расчете баланса сил (2.16) для узлов, лежащих на линии «разреза», учитывается вклад тех ячеек, которые лежат по одну из сторон от линии «разреза», плюс вклад ячеек по другую сторону «разреза», но умноженный на заданный коэф-фициент.

В случае если этот коэффициент в какой-либо ячейке равен единице, то это, по сути, равнозначно отсутствию «разреза» в данном месте расчетной сетки. Если же он равен нулю, то в этом случае узлы, лежащие на «разрезанной» границе и принадлежащие ячейкам, лежащим по разные стороны «разреза», могут смещаться абсолютно независимо (при этом

в случае 2d-модели ячейки могут либо «перехлестываться», либо «разъезжаться», а при 3d-моделировании – «скользить» вдоль поверхностей разломов). Возможно наложить условие, чтобы узлы ячеек могли двигаться только вдоль линии разреза.

Возможность вести расчеты не на сплошной сетке позволяет включать в модель линии разломов и границы литосферных плит, причем, изменяя коэффициент взаимодействия вдоль «разрезанной» границы, можно задавать границы разных типов на данном участке расчетной сетки (зона спрединга, субдукции, коллизии и пр.).

Глава 3. Свойства литосферы и движущие силы тектоники плит

Как говорилось выше, предлагаемая методика расчета распределения напряжений основана на численном решении уравнения равновесия (2.1), поле внешних сил F_i для которого задавалось в качестве исходных данных. Также в качестве входных данных в расчетах поля напряжений выступали свойства моделируемой среды – плотность, модуль Юнга, прочность. Моделируемой средой в настоящей работе является литосфера Земли, а основными источниками напряжений в ней полагаются силы разности гравитационного потенциала. Поэтому необходимым условием для моделирования напряженного состояния в литосфере Земли является не только разработка и реализация описанных выше алгоритмов расчета поля напряжений (см. гл.2), но и подготовка необходимых для этих расчетов входных данных.

Данная глава посвящена методике расчета распределения температур и плотностей в литосфере, определению ее мощности и прочности, а также алгоритмам расчета топографических сил и некоторым вопросам, касающимся моделирования литосферных складок.

3.1. Понятие литосферы и ее термальной мощности

Под литосферой понимается внешняя, относительно более прочная оболочка твердой Земли, расположенная над менее вязкой и более пластичной астеносферой. Данный термин был впервые предложен американским геологом Дж. Барреллом в 1914 г. (Barrell, 1914) Изначально литосфера отождествлялась с земной корой, однако затем было установлено, что она почти повсеместно включает в себя верхнюю часть мантии мощностью от нескольких десятков до первых сотен км. Положение подошвы литосферы определяется по изменению механического поведения среды: нижняя граница литосферы маркирует переход от относительной твердой и прочной внешней оболочки Земли (литосферы) к астеносфере, характеризующейся большей степенью пластичности вследствие того, что в ней вещество находится в частично расплавленном состоянии. Таким образом, граница литосфера-астеносфера носит *реологический* характер, а не химико-петрографический как, например, граница кора-мантия, где происходит переход от основных пород нижней части коры к ультраосновным породам мантии.

Однако, на практике изменения реологических свойств мантии не доступны непосредственному определению, поэтому чаще всего подошва литосферы фиксируется по изменению в скоростях прохождения сейсмических волн (в этом случае используется термин *«сейсмическая* литосфера»). При количественных расчетах для приблизительного

определения положения нижней границы литосферы часто полагают, что она проходит по некой заданной геотерме (обычно со значением около 1300°С, близким к солидусу мантийных пород). В таких случаях говорят о *«термальной* литосфере» и *термальной мощности* литосферы. При этом надо иметь в виду, что по некоторым оценкам (Jaupart, Mareschal, 1999), разница в мощности между *термальной* и *сейсмической* литосферой может достигать 40-50 км.

В настоящее время опубликованы фактические данные, позволяющие рассчитать полноценную термальную модель литосферы Земли и оценить ее мощность в глобальном масштабе. В качестве таких данных в настоящей работе были использованы: топография (цифровая модель рельефа ETOPO5 (National Geophysical Data Center, 1988)), структурновещественный состав земной коры (по данным модели CRUST 2.0 (Bassin et al., 2000; Mooney et al., 1998)), гравитационные аномалии (гравитационная модель EGM96 (Lemoine et al., 1998)), возраст океанического дна (Muller et al., 1997), распределение среднегодовых температур на поверхности Земли (Leemans et al., 1991; Lieth et al., 1972).

В настоящей работе на основании перечисленных входных данных был выполнен расчет положения подошвы литосферы и распределения температур в ней. В результате получена глобальная карта расчетной термальной мощности литосферы Земли.

Отличие от ранее опубликованных локальных (Artemieva, 2003; Artemieva et al., 2006; Artemieva, 2007; Cloetingh et al., 2007; Artemieva, Thybo, 2008) и глобальных моделей термальной мощности литосферы (Artemieva, Mooney, 2001; Artemieva, 2006, Artemieva, 2009) заключается в том, что, во-первых, в настоящей работе производилась корректировка «базовой» термальной модели за счет поправок на изостатическую компенсацию литосферы, и во вторых, в том, что расчет выполнен для всей литосферы Земли, а не только на только для литосферы континентов.

3.2. Методика расчета термальной мощности литосферы

Термальная мощность литосферы в каждой точке земной поверхности определялась в данной работе как разница между глубиной расчетной изотермы 1300°С и абсолютной отметкой рельефа. Расчет выполнялся на сетке с размером ячейки 0,5°х0,5°; границы ячеек были ориентированы вдоль параллелей и меридианов.

Положение изотермы определялось из модели термального состояния литосферы. Расчет распределения температур с глубиной для океанической и континентальной литосферы производился различным образом.

Распределение температур T(z) с глубиной (z) в континентальной литосфере принималось стационарным и рассчитывалось как

$$T(z) = T_0 + \int_{z_0}^{z} \frac{q(V)}{k(V)} dV,$$
(3.1)

где T_0 – температура на поверхности Земли (распределение по расчетной сетке бралось по данным (Leemans et al., 1991; Lieth et al., 1972), приведенным на рис.3.2), z_0 – абсолютная отметка рельефа (значения для расчетов брались по данным (National Geophysical Data Center, 1988), показанным на рис.3.1), k(z) – коэффициент теплопроводности, q(z) – тепловой поток

$$q(z) = q_0 - \int_{z_0}^{z} A(V) dV, \qquad (3.2)$$

 $q_0 = q(z_0)$ – тепловой поток на поверхности Земли, объемная теплогенерация пород литосферы A(z) предполагалась экспоненциально убывающей с глубиной

$$A(z) = A_0 \exp(-\frac{z}{H}), \qquad (3.3)$$

где A_0 и H – константы (3×10⁻⁶Вт/с и 1×10⁴м соответственно) (Stein, 1995).

Распределение по глубине коэффициента теплопроводности k(z) рассчитывалось двумя различными способами. При одном подходе использовалась формула:

$$k(z) = A + \frac{B}{350 + T(z)},$$
(3.4)

где температура T измеряется в °С, а константы A и B принимают значения для осадков равные 0,13 и 1073; для верхней и средней коры – 0,75 и 705; для нижней коры – 1,18 и 474; для мантии – 0,73 и 1293 (Clauser, Huenges, 1995).

При другом способе расчета распределение коэффициента теплопроводности в верхней и средней коре определялось согласно (Cermak, Rybach, 1982) как

$$k(z) = \frac{k_0}{1 + c \cdot T(z)},$$
(3.5)

где k_0 – теплопроводность соответствующих пород при поверхностных условиях (принималась равной 3 Вт×м⁻¹×K⁻¹), *с* – константа, изменяющаяся в пределах от 0 до 0,003°C⁻¹ (принималась равной 0,001°C⁻¹). Значение коэффициента теплопроводности в осадках полагалось постоянным и равным 2,5 Вт×м⁻¹×K⁻¹, в нижней коре – 2 Вт×м⁻¹×K⁻¹(Seipold, 1992), а в литосферной мантии 4 Вт×м⁻¹×K⁻¹ (Schatz, Simmons, 1972; Scharmeli, 1979).

Рис.3.1. Абсолютные отметки рельефа по данным (National Geophysical Data Center, 1988)

Рис.3.2. Температура на поверхности Земли по данным (Leemans et al., 1991; Lieth et al., 1972)

Оказалось, что расчетная термальная мощность литосферы мало зависит от того, какая принята модель распределения по глубине коэффициента теплопроводности. Более того, даже в случае постоянного значения коэффициента теплопроводности (3 $BT \times M^{-1} \times K^{-1}$) по всей мощности литосферы, отклонение итогов расчетов от полученных при использовании формул (3.4) или (3.5) составляет не более 10%. Обсуждаемые и используемые далее результаты получены при значениях коэффициента теплопроводности, основанных на втором из предложенных способов его расчета (уравнение (3.5)).

Также в результате численных экспериментов было установлено, что при изменении значений температуры на поверхности Земли (T_0 в уравнении (3.1)) в диапазоне от -40°C до +40°C полученная в результате соответствующих вычислений термальная мощность литосферы варьирует лишь в пределах долей процента от ее средней величины. Таким образом, можно говорить о том, что распределение температур на поверхности является входным параметром, который не оказывает значимого влияния на итоговые результаты расчетов.

Для расчета распределения температур в океанической литосфере использовалось два подхода. В одном случае принималась простейшая линейная зависимость температуры от глубины:

$$T(z) = T_0 + a \cdot z. \tag{3.6}$$

При другом подходе распределение температур в океанической литосфере рассчитывалось в зависимости от ее возраста в рамках модели остывающего полупространства (Теркот, Шуберт, 1985) как

$$\frac{T(z) - T_0}{T_m - T_0} = erf\left(\frac{z - z_0}{2\sqrt{c \cdot t}}\right),\tag{3.7}$$

где T_m – температура подлитосферной мантии (принималась равной 1444°С), c – коэффициент температуропроводности (принят – 10⁻⁶ м²/с) (Stein, 1995), *erf* – функция ошибок, t – возраст литосферы.

Основные особенности получаемого в результате расчетов по формуле (3.7) распределения температур в океанической литосфере проиллюстрированы на рис.3.3. Приведенное на рис.3.3 распределение, рассчитано для интервала возраста литосферы от 0 до 150 млн. лет. При построении реальных моделей использовались данные по возрасту океанического дна из работы (Muller et al., 1997), показанные на рис.3.4. Главными параметрами, определяющими термальное состояние литосферы, в данном случае, оказываются поверхностный тепловой поток для континентальной литосферы и возраст океанической литосферы.

Рис.3.3. Расчетное распределение температур в океанической литосфере из модели остывающего полупространства

Вообще говоря, рассчитанное таким образом распределение температур будет содержать неточности, связанные с тем, что мы не очень хорошо знаем величину радиоактивной теплогенерации и коэффициент теплопроводности коровых пород, мощности коровых слоев, тепловой поток на поверхности, а также с невыполнением предположения о стационарности теплового режима для континентальной литосферы или с неучетом в модели дополнительных термальных факторов, таких как эффект горячих точек. Модель, рассчитанная только на основании выше приведенных термальных алгоритмов, далее в работе будет называться «базовой». «Базовую» модель можно улучшить, если использовать дополнительную информацию. Как известно, изменение температуры пород литосферы ведет к изменению их плотности, которая в свою очередь влияет на изостатическое состояние литосферы. Как следствие, оказывается возможным использовать модель изостатической компенсации для корректировки термальной модели. Согласно гипотезе локальной изостазии для литосферы, находящейся в состоянии локального изостатического равновесия, веса любых двух вертикальных колонок литосферы от поверхности до глубины изостатической компенсации должны быть равны:

$$\int_{z_0(x_1,y_1)}^{z_I} r(x_1,y_1,z) dz = \int_{z_0(x_2,y_2)}^{z_I} r(x_2,y_2,z) dz,$$
(3.8)

где $z_0(x, y)$ – абсолютная отметка рельефа в точке с координатами (x,y), z_1 – уровень изостатической компенсации, r(x, y, z) – плотность слагающих литосферу пород в точке с координатами (x,y,z).

Рис.3.4. Возраст океанического дна по данным (Muller et al., 1997)

Поправки к «базовой» модели за счет модели изостатической компенсации вводились следующим образом. Поверхностный тепловой поток q_0 в уравнении (3.2), коэффициент *a* в уравнении (3.6) и возраст *t* в уравнении (3.7) не полагались независимыми входными параметрами при расчетах распределения температур в континентальной и океанической литосфере соответственно, но рассчитывались из положения изотермы 1300°С (подошвы литосферы), которое определялось из условия локальной изостазии по формуле (3.8).

Выражая тепловой поток на поверхности q_0 из формул (3.1) и (3.2) имеем

$$q_{0} = \frac{T(z_{0} + H_{L}) - T_{0} + \int_{z_{0}}^{z_{0} + H_{L}} \left(\frac{\int_{z_{0}}^{V} A(z) dz}{k(V)} \right) dV}{\int_{z_{0}}^{z_{0} + H_{L}} \frac{1}{k(z)} dz}$$
(3.9)

Таким образом, зная величину мощности литосферы H_L , рассчитанную в рамках модели изостатического равновесия, мы можем рассчитать поверхностный тепловой поток. Коэффициент *а* может быть выражен через H_L из (3.6) как

$$a = \frac{T(z_0 + H_L) - T_0}{H_L},$$
(3.10)

а возраст литосферы из (3.7) как

$$t = \frac{1}{c} \left(\frac{H_L}{2 \cdot erf^{-1}(\frac{T(z_0 + H_L) - T_0}{T_m - T_0})} \right)^2,$$
 (3.11)

где erf^{-1} – функция, обратная функции ошибок.

Таким образом, изостатическая модель связывалась с термальной через условие $z_1 = z_{1300}$, где z_{1300} – глубина изотермы 1300°С.

В случае если расчет распределения температур в океанической литосфере производился исходя из модели остывающего полупространства (3.7), можно вообще не вводить изостатических поправок. При этом расчет глубины океанического дна из модели изостатической компенсации (3.8) (при условии, что мощность литосферы, а также распределение температур и плотностей в ней известны) и сравнение расчетных данных с фактическими может быть хорошим критерием правильности принятой модели.

Рис.3.5-3.7. Мощность льда, мягких осадков и твердых осадков (сверху вниз) по данным модели CRUST2.0 (Bassin et al., 2000; Mooney et al., 1998)

Рис.3.8-3.10. Мощность верхней, средней и нижней коры (сверху вниз) по данным модели CRUST2.0 (Bassin et al., 2000; Mooney et al., 1998)

Рис.3.11. Общая мощность земной коры по данным модели CRUST2.0 (Bassin et al., 2000; Mooney et al., 1998)

Рис.3.12-3.14. Плотность мягких осадков, твердых осадков и верхней коры (сверху вниз) по данным модели CRUST2.0 (Bassin et al., 2000; Mooney et al., 1998)

Рис.3.15-3.17. Плотность средней коры, нижней коры и верхней мантии (сверху вниз) по данным модели CRUST2.0 (Bassin et al., 2000; Mooney et al., 1998)

Рис.3.18. Средняя плотность верхней, средней и нижней коры по данным модели CRUST2.0 (Bassin et al., 2000; Mooney et al., 1998)

Для введения поправок к «базовой» модели литосферы за счет влияния локальной изостазии необходимо из соотношения (3.8) рассчитать мощность литосферы H_L . Так как мощность ледового покрова, мягких и твердых осадков, а также верхней, средней и нижней частей кристаллической коры считались известными по данным модели CRUST 2.0 (Bassin et al., 2000; Mooney et al., 1998), в качестве рассчитываемой величины в уравнении (3.8) выступала мощность мантийной части литосферы. Данные модели CRUST 2.0 показаны на рис.3.5-3.18.

Для расчета распределения плотности по глубине в каждой ячейке расчетной сетки использовалась зависимость плотности слагающих литосферу пород *r* при заданном минеральном составе от температуры:

$$r(T) = r(T_0) \cdot (1 - a(T - T_0)), \qquad (3.12)$$

где a – коэффициент объемного расширения пород (принимался равным 2,5*10⁻⁵ °C⁻¹) (Stein, 1995). Данные по плотностям при поверхностных температурах $r(T_0)$ для различных слоев земной коры и верхней мантии были также взяты из модели CRUST 2.0, а распределение температур по глубине было рассчитано ранее по формулам (3.1-3.7).

Модель изостатической компенсации, используемая для корректировки «базовой» термальной модели, сама может быть несколько уточнена за счет включения в расчеты данных по гравитационным аномалиям в свободном воздухе.

Как известно (Теркот, Шуберт, 1985), аномалия силы тяжести в каждой точке поверхности может быть выражена через избыток или дефицит массы под этой точкой по формуле Буге:

$$\Delta g = 2pG \int_{0}^{h} r(z)dz, \qquad (3.13)$$

где Δg гравитационная аномалия в свободном воздухе, *G* постоянная всемирного тяготения (6,67*10⁻¹² м³·кг⁻¹·с⁻²). Данная формула наилучшим образом применима для объектов, толщина *h* которых намного меньше, чем горизонтальный масштаб.

Таким образом, если бы гипотеза локальной изостазии полностью выполнялась и веса двух любых латерально разнесенных литосферных колонок были бы одинаковы (как это предполагается в уравнении (3.8)), то гравитационные аномалии в свободном воздухе были бы повсеместно равны нулю, что не согласуется с фактическими данными. Поэтому в принятой гипотезе локальной изостазии надо брать поправку на гравитационные аномалии, т.е. формула (3.8) с учетом (3.13) должна быть расширена до выражения

$$\int_{z_0(x_1,y_1)}^{z_1} r(x_1,y_1,z_1) dz - \int_{z_0(x_2,y_2)}^{z_1} r(x_2,y_2,z_2) dz = \frac{\Delta g_1 - \Delta g_2}{2pG},$$
(3.14)

которое показывает, что в случае отсутствия полной изостатической компенсации разность весов разнесенных вертикальных литосферных колонок отразится в разности гравитационных аномалий над ними.

Для расчетов данные по гравитационным аномалиям в свободном воздухе (рис.3.19) брались согласно гравитационной модели EGM96 (Lemoine et al., 1998).

На рис.3.20 приведены результаты расчетов по предлагаемой в настоящей работе методике мощности мантийной литосферы H_L для модельных разрезов, иллюстрирующих в качестве примеров главные принципы вычислений. Рельеф вдоль линии разреза в одном случае брался постоянным (рис.3.20а), а в другом – изменяющимся по синусоиде таким образом, что максимальное превышение составляло 2 км (рис.3.20б). Мощности и плотности слоев земной коры при этом полагались постоянными – мягкие осадки: H_{soft_sed} =3 км, r_{soft_sed} =2010 кг/м³; верхняя кора: H_{up_crust} =10 км, r_{up_crust} =2600 кг/м³; средняя кора: H_{mid_crust} =10 км, r_{low_crust} =3040 кг/м³ – так же как плотность литосферной мантии: r_L =3350 кг/м³ и плотность астеносферы: r_a =3200 кг/м³.

Рис.3.20а показывает, как изменение по синусоиде от -200 до 200 мГл гравитационных аномалий в свободном воздухе Dg отражаются в положении подошвы расчетной термальной мощности литосферы – в области развития положительных аномалий мантийная часть литосферы утолщается, а области отрицательных – утоняется.

На рис.3.20б видно, что при некоторых условиях (при максимальном рельефе в 2 км и максимальной гравитационной аномалии в 200 мГл) в результате расчетов могут быть получены отрицательные значения мантийной литосферы H_L . По сути, это означает, что даже в случае полного отсутствия мантийной прослойки, условие локальной изостазии в этом месте выполнено не будет. Обычно, отрицательные значения расчетной мощности литосферы объясняются наличием аномально высоких температур в данных участках литосферы.

Заметим также, что для расчета мощности мантийной литосферы из (3.8, 3.14) помимо данных о структуре литосферы, гравитационных аномалиях и распределении температур по глубине для каждого элемента расчетной сетки, для того чтобы однозначно определить одну из частей уравнения (3.8) необходимо задать «стандартную» литосферную колонку с известной мощностью литосферы, гравитационной аномалией и распределением плотностей. В качестве таковой была выбрана колонка над «стандартным» срединноокеанским хребтом.

Рис.3.19. Гравитационные аномалии в свободном воздухе по данным модели EGM96 (Lemoine et al., 1998)

Рис.3.20а. Результаты расчетов мощности литосферы для модельного разреза с постоянным рельефом

Рис.3.206. Результаты расчетов мощности литосферы для модельного разреза с изменяющимся рельефом

Данная колонка характеризуется следующими параметрами: 1) глубина поверхности дна – 3 км; 2) суммарная мощность коры – 6,5 км; 3) средняя плотность коры – 2850 кг/м³; 4) мощность мантийной литосферы – 0,85 км; 5) плотность верхней мантии – 3300 кг/м³; 6) гравитационная аномалия в свободном воздухе – 9,705*10⁻⁵ м/с².

При используемом алгоритме расчета распределение температур определяется положением подошвы литосферы, которая, в свою очередь, сама зависит от распределения температур. Эта неоднозначность может быть устранена за счет выполнения серии итераций, каждая из которых включает расчет распределения температур исходя из положения подошвы литосферы, рассчитанной на предыдущей итерации, и собственно расчет новой уточненной глубины подошвы литосферы.

Существенную неоднозначность в расчеты вносит необходимость выбора плотности астеносферы. В настоящей работе она определялась как минимум между минимальным значением плотности верхней мантии при температуре подошвы литосферы (рассчитанным по формуле (3.12)) и значением 3200 кг/м³. Непревышение плотности астеносферы плотности литосферной мантии является необходимым условием для сходимости расчетных итераций, о которых говорилось выше.

В ранее опубликованных глобальных термальных моделях литосферы (Artemieva, Mooney, 2001; Artemieva, 2006) в качестве основного исходного параметра для расчета распределения температур в литосфере использовался поверхностный тепловой поток. Это приводило к определенным трудностям, связанным с нерегулярностью распределения точек замера теплового потока. Так, в работе (Artemieva, Mooney, 2001) в областях докембрийских кратонов использовались результаты интерполяции нерегулярно распределенных данных замеров поверхностного теплового потока на поверхности, а для фанерозойских континентальных областей (где достоверные замеры поверхностного теплового потока крайне редки) применялась статистическая обработка, в основе которой лежала выведенная зависимость между термальной мощностью литосферы и ее возрастом (Artemieva, 2006); при этом условие локальной изостазии использовалось только для оценки плотности уже рассчитанной мантийной части литосферы и на итоговое положение подошвы литосферы никак не влияло. Помимо трудностей, связанных с нерегулярностью распределения точек замера, использование поверхностного теплового потока в качестве основы расчета могло послужить причиной некоторой неточности модели ввиду возможного влияния на поверхностный тепловой поток факторов не связанных с глубинным термическим состоянием недр, таких как быстрое осадконакопление, циркуляция подземных вод, вековые вариации климата, значительных вариаций коэффициента теплопроводности в верхних слоях осадочного чехла и т.п. (см. напр. (Смирнов, 1980)).

Использование изостатической поправки, применяемое в настоящей работе, позволило снизить степень влияния на итоговый результат таких факторов как нестационарность теплового режима, неточность знаний о величине поверхностного теплового потока, коэффициента теплопроводности и параметров, определяющих теплогенерацию пород.

Важно отметить, что на выходе расчетов по описанной методике получается не просто карта термальной мощности литосферы (которая является самостоятельным научным результатом, обсуждаемым в следующем разделе), а *трехмерная* модель распределения температур и плотностей в литосфере, которую можно считать промежуточным звеном при построении предлагаемых в настоящей работе моделей распределения напряжений и деформаций.

Зd-модель распределения свойств литосферы использовалась не только для количественной оценки сил разности гравитационного потенциала (см. 3.5), но и для определения интегральных значений упругих параметров литосферы (модуль Юнга), плотность (E, r):

$$E(x, y) = \int_{z_0}^{z_0 + H_L} e(x, y, z) dz, \ r(x, y) = \int_{z_0}^{z_0 + H_L} ro(x, y, z) dz, \qquad (3.15)$$

где *е*, *го* – модуль Юнга и плотность составляющих литосферу пород.

Как говорилось выше, силы разности гравитационного потенциала формировали поле внешних сил F_i в уравнении равновесия (2.1), к решению которого сводится методика расчета поля напряжений (см. гл.2), а в качестве свойств моделируемой среды выступали именно интегральные значения модуля Юнга (*E*) и плотности (*r*) литосферы, полученные по формулам (3.15).

При этом заметим, что рассчитанные в рамках плоской задачи напряжения (s_{ij}) в действительности тоже являются интегрированной по вертикальной координате величиной:

$$\boldsymbol{S}_{ij}(x,y) = \int_{z_0}^{z_0+H_L} (x,y,z)dz$$
(3.16)

где *s*_{ij} – напряжения в литосфере.

В то же время смещения, скорости смещений и скорости деформаций предполагались однородно распределенными по вертикали

$$u_i(z) = const; \ u_i(z) = const; \ e_{ii}(z) = const.$$
 (3.17)

В следующем разделе приведено обсуждение результатов расчета термальной мощности как наиболее показательной составляющей полученной температурно-плотностной

модели литосферы. Данное осуждение необходимо для того, чтобы продемонстрировать насколько расчетная термальная мощность литосферы отражает главные структуры литосферы и согласуется с общепринятыми представлениями о том, какую мощность имеет литосфера в том или ином регионе. В том случае, если построенная модель литосферы даже в первом приближении не соответствует реальности, вряд ли стоит ожидать, что рассчитанные на ее основе движущие силы сформируют поле напряжений, хорошо согласующееся с фактическими данными. Если же термальная модель не противоречит имеющимся данным и представлениям, то вероятность получить в такой литосфере правдоподобное поле напряжений сильно повышается.

3.3. Результаты расчетов термальной мощности литосферы

На рис.3.21 представлены результаты расчетов термальной мощности литосферы Земли для модели, в рамках которой изостатическая поправка в расчет распределения температур в океанической литосфере по формуле (3.7) не вводилась. Расчетная мощность литосферы, полученная при использовании изостатической поправки не только для континентальной, но и океанической ее составляющей, приведена на рис.3.22. Она характеризуется тем, что в ней находят свое отражение все главные тектонические структуры Земли. На рис.3.23 показано положение профилей, которые проходят через некоторые характерные структуры Земли, а на рис.3.24 и рис.3.25 приведены собственно разрезы по этим линиям. Построенные разрезы необходимы для упрощения восприятия главных особенностей полученных данных.

Вдоль срединно-океанических хребтов, где происходит формирование новой океанической литосферы, наблюдается значительное ее утонение вплоть до нулевых значений. Данную особенность можно видеть на профиле Б1-Б2 для Срединно-Атлантического и Аравийско-Индийского спрединговых хребтов. По мере удаления от срединноокеанических хребтов возраст океанической литосферы постепенно увеличивается, а вместе с ним и ее мощность. На границе континент-океан она может достигать величин 120-140 км. Закономерное утолщение литосферы от центральной части к периферии для Индийского океана показано на разрезе Б1-Б2, а для Атлантического – на разрезах Б1-Б2 и B1-B2.

Важно отметить, что в областях развития плюмового океанического магматизма (Гавайские, Азорские о-ва, хребет Девяностого градуса, поднятие Рио-Гранде и пр.) вопреки приведенной выше закономерности наблюдается значительное уменьшение мощности литосферы (для модели, приведенной на рис.3.22).

Рис.3.21. Расчетная термальная мощность литосферы. Модель, не учитывающая изостатическую поправку для океанической литосферы

Рис.3.22. Расчетная термальная мощность литосферы. Модель, учитывающая изостатическую поправку для океанической литосферы

Рис.3.23. Положение линий разреза А1-А2, Б1-Б2, В1-В2, Г1-Г2, Д1-Д2, Е1-Е2, Ж1-Ж2

На профиле B1-B2 хорошо проявлена Гавайская горячая точка, а на профиле Б1-Б2 – плюмы Азорских островов и Маскаренского хребта. Для расположенного на срединноокеаническом хребте Исландского плюма (профиль B1-B2) расчетные мощности мантийной литосферы вообще принимают отрицательные значения. Как говорилось выше, технически это соответствует не выполнению условия локальной изостазии даже в случае полного отсутствия мантийного прослоя в литосфере, а физический смысл данного явления состоит в том, что литосфера на данном участке находится в крайне разогретом состоянии. При этом очевидно, что модель, в которой мощность океанической литосферы рассчитана только из ее возраста, (рис.3.21) отразить в себе эффект внутриплитного магматизма не в состоянии.

В целом, для большей части океанов мощность литосферы не превышает 150 км.

В пределах континентов минимальные значения мощности литосферы (от 40 до 0 км) фиксируются под континентальными рифтовыми системами (Восточно-Африканская, Калифорнийская, Байкальская, Момская, Красноморская и пр.). Так, например, североамериканские структуры провинция Бассейнов и Хребтов и Калифорнийская рифтовая система четко отражаются в утонении литосферы на разрезах B1-B2 и E1-E2 соответственно, а на разрезе Б1-Б2 хорошо идентифицируются две ветви (Западная и Восточная) Восточно-Африканской рифтовой системы.

Рис.3.24. Разрезы по линиям А1-А2, Б1-Б2, В1-В2

М – граница Мохоровичича, Л-А – граница между литосферой и астеносферой;

ВЕП – Восточно-Европейская платформа, 3С – Западно-Сибирская плита, ВС – Восточно-Сибирская платформа, ВЧ – Верхояно-Чукотская складчатая область, САХ – Срединно-Атлантический хребет, АП – Азорский плюм, ВАРС – Восточно-Африканская рифтовая система, МХ – Маскаренский хребет, АИХ – Аравийско-Индийский хребет, ГП – Гавайский плюм, БХ – провинция Бассейнов и Хребтов, ИП – Исландский плюм

Рис.3.25. Разрезы по линиям Г1-Г2, Д1-Д2, Е1-Е2, Ж1-Ж2

М – граница Мохоровичича, Л-А – граница между литосферой и астеносферой;
 СМ – Средиземноморская впадина, ЧМ – Черноморская впадина, ПЗ – впадина Персидского залива, ЮК – Южно-Каспийская впадина, СК – Северо-Каспийская впадина, КРС – Калифорнийская рифтовая система, МЗ – впадина Мексиканского залива, ЯМ – впадина Японского моря, ЯЖ – Японский желоб

Области развития древних платформ (Восточно-Европейская, Восточно-Сибирская, Африканская, Северо-Американская и пр.) характеризуются мощностью литосферы в 150-200 км (профили A1-A2, Б1-Б2, В1-В2). Для более молодых горно-складчатых систем в целом свойственна литосфера меньшей мощности. Например, для каледонских Аппалачей она составляет 120-130 км (профиль B1-B2), а для герцино-альпийской области Западной Европы – 50-150 км.

Достаточно интересной и, вместе с тем, спорной особенностью (отраженной в том числе и на разрезе A1-A2) является малое отличие в мощностях литосферы древних Восточно-Сибирской и Восточно-Европейской платформ и молодой эпигерцинской Западно-Сибирской плиты, а также малые мощности мезозойской Верхояно-Чукотской складчатой системы – 50-70 км при почти полном выклинивании мантийного слоя.

На профиле A1-A2 отчетливо видно, что мощность литосферы под Восточно-Европейской и Восточно-Сибирской платформами, а также Западно-Сибирской плитой колеблется в пределах от 100 до 200 км, но наиболее часто встречающееся положение подошвы литосферы под этими структурами соответствует глубине около 150 км. Также нельзя не отметить аномальное утолщение литосферы (до 300 км), которое имеет место под герцинским складчатым сооружением Урала.

На рис.3.26 представлены распределения мощности континентальной литосферы согласно ранее опубликованным моделям – результаты термального моделирования (Artemieva, 2006), а также данные сейсмической топографии по поверхностным (Shapiro, Ritzwoller, 2002) и объемным волнам (Grand, 2002). На этой иллюстрации можно заметить, что соотношение между мощностями литосферы для древних Восточно-Европейской и Восточно-Сибирской платформ меняется от одной модели к другой. Так, в модели Артемьевой (Artemieva, 2006) более высокие (свыше 300 км) значения мощности литосферы свойственны для Восточно-Сибирской платформы, в модели Шапиро и Ритцволлера (Shapiro, Ritzwoller, 2002) обе платформы характеризуются одинаковым диапазоном изменения мощностей (от 200 до 300 км), а модель Гранда (Grand, 2002) демонстрирует, что значения свыше 300 км распространены только в пределах Восточно-Европейской платформы. При этом на каждой из предлагаемых карт в той или иной мере проявлено относительное утонение литосферы под более молодой Западно-Сибирской плитой. Наиболее ярко эта особенность отражена в модели Артемьевой, согласно которой мощность литосферы в Западной Сибири может понижаться до 50-100 км, а наименее четко это выражено в модели Гранда, где относительное утонение до 200-250 км в северной части Западно-Сибирской плиты распространяется также и на обширные площади Восточно-Сибирской платформы.

Рис.3.26. Мощность континентальной литосферы по данным:

a) термального моделирования (модификация модели, представленной в (Artemieva, 2006)); б) сейсмической томографии по поверхностным волнам (Shapiro, Ritzwoller, 2002); в) сейсмической томографии по объемным волнам (Grand, 2002). Рисунок взят из работы (Artemieva, 2009)

Рис.3.27. Сравнение результатов расчетов положения подошвы литосферы (тонкая черная линия) с данными модели Артемьевой (толстая серая линия) (Artemieva, 2006) вдоль линии профиля A1-A2. Прочие условные обозначения – согласно принятым на рис.3.24

Значительное утолщение литосферы под Уралом, фиксирующееся в рассчитанной в рамках настоящей работы термальной мощности, не наблюдается ни в одной из этих трех моделей. В обеих моделях сейсмической томографии (как по поверхностным, так и по объемным волнам) получены низкие (50-100 км) значения мощности литосферы в пределах Верхояно-Чукотской области, что, в целом, согласуется с предлагаемым в настоящей работе распределением. Однако модель Артемьевой предполагает наличие в этом регионе участков, имеющих мощность свыше 150 км, что полученным результатам наоборот не вполне соответствует.

На рис.3.27 приведено сравнение представляемых в настоящей работе результатов по положению подошвы литосферы с данными расчетов модели Артемьевой (Artemieva, 2006) вдоль линии разреза A1-A2. Можно отметить достаточно хорошую степень соответствия этих данных между собой в пределах участков данного профиля, отвечающим Восточно-Европейской платформе и Западно-Сибирской плите. Однако для прочих отрезков разреза наблюдаются значительные расхождения: в модели Артемьевой не проявляется никакого утолщения литосферы под Уральским орогеном, но при этом модель Артемьевой демонстрирует более высокие значения мощности литосферы для Восточно-Сибирской платформы (до 300 км и более вместо полученных в настоящей работе 100-150 км) и Верхояно-Чукотской области (100-150 км вместо 40-50 км). Также необходимо констатировать, что достаточно хорошее совпадение положения подошвы литосферы в сравниваемых моделях для Западной Сибири во многом обусловлено тем, что данный профиль проходит через ее южную часть. На юге Западно-Сибирской плиты согласно модели Ар-

темьевой мощность литосферы повышается до 150 км и приходит в приемлемое соответствие с результатами предлагаемых в настоящей работе расчетов, в то время как в северной ее части расхождения могут достигать сотни км вследствие понижения мощности литосферы в модели Артемьевой до 50-100 км.

Столь значительные расхождения рассчитанной в рамках настоящей работы термальной мощности литосферы с результатами, полученными в ранее опубликованных моделях (например, в модели Артемьевой, которая так же основана на термальных расчетах), имеющие место в пределах некоторых участков континентальной литосферы, заставляют предположить необходимость использования в качестве исходных данных более детальных региональных материалов для получения более корректных с точки зрения соответствия ранее опубликованным данным и общепринятым представлениям результатов.

Поскольку в качестве одного из основополагающих принципов, принятых при расчетах термальной мощности литосферы, является выполнение условия локальной изостазии (см. выше), результаты расчета мощности мантийной литосферы находятся в очень сильной зависимости от заданной в качестве входной информации структуры земной коры. Данные о структурно-вещественном составе земной коры, использовавшиеся при расчетах, были основаны на глобальной модели CRUST 2.0 (Bassin et al., 2000; Mooney et al, 1998). Главным преимуществом данной модели (которое собственно и обусловило ее выбор для использования в настоящей работе) является тот факт, что в ней представлена информация, покрывающая по равномерной сетке с достаточным для глобальных построений разрешением весь земной шар без пропусков. При этом очевидно, что применительно к некоторым конкретным регионам эта модель может сильно уступать результатам региональных исследований не только в детальности, но и просто в соответствии представленных данных реальной структуре коры. Для Евразийского континента, для которого, как показано выше, наблюдаются некоторые проблемы в плане согласованности результатов расчета термальной мощности с ранее опубликованными моделями, накоплен огромный объем информации о строении земной коры и верхней мантии по данным геофизических (главным образом, сейсмических) исследований (Кашубин, 1992; «Геотраверс «Гранит»...», 2002; Костюченко, 1995; Костюченко и др., 1995; Костюченко, 1997; Костюченко, Солодилов, 1997; Костюченко, Исмаил-заде, 1998; Костюченко, Морозов, 2007; Павленкова, 1988; Павленкова, 2006; Павленкова, 2011; Сулейманов и др. 2007 и пр.). Поэтому для получения более точной и адекватной с точки зрения современных представлений модели необходимо произвести сбор и анализ этого материала для корректировки входных данных по структуре коры, а также для сравнения полученных результатов по мощности литосферы с данными этих региональных работ.

Однако такого рода исследования по обобщению и рассмотрению региональных материалов с целью уточнения и/или исправления имеющихся данных глобальной модели CRUST 2.0 выходят за рамки настоящей работы, оставаясь при этом одной из главных задач в будущем.

Некоторые из перечисленных региональных работ по Евразийскому континенту («Геотраверс «Гранит»...», 2002; Павленкова, 2011), а также результаты моделирования термального режима для этой территории (Хачай, Дружинин, 1996; Хачай, Дружинин, 1998; Хачай и др., 2002) были рассмотрены для уточнения спорных моментов и разрешения некоторых вопросов, связанных с явными разногласиями в результатах, которые получены в рамках различных моделей мощности литосферы.

В работе («Геотраверс «Гранит»...», 2002) приводится плотностной разрез по линии Северная Атлантика – Сибирь (рис.3.28), на котором показаны зоны разуплотнения верхней мантии, которые можно интерпретировать как фрагменты астеносферы. Под Восточно-Европейской и Восточно-Сибирской платформой эти зоны залегают примерно на одной и той же глубине – около 200 км. При этом под Западно-Сибирской плитой этих зон разуплотнения имеется сразу две – одна располагается на глубине 100 км и представляет собой изолированный участок мантии с пониженной плотностью, а другая залегает на глубине 200 км и является продолжением зоны, располагающейся под Восточно-Сибирской платформой. Поэтому остается открытым вопрос относительно того, какую из этих зон считать участком астеносферы и, следовательно, по какой глубинной отметке (100 или 200 км) проводить положение подошвы литосферы.

Согласно данным глубинного сейсмического зондирования с использованием мирных ядерных взрывов (Павленкова, 2011) слои с пониженной скоростью сейсмических волн на территории Восточно-Сибирской платформы и Западно-Сибирской плиты залегают примерно на одной глубине – 100 км (рис.3.29). С одной стороны, эти данные хорошо согласуются с наличием разуплотненного участка на глубине 100 км под Западной Сибирью на обсуждавшемся выше профиле Северная Атлантика – Сибирь («Геотраверс «Гранит»...», 2002), а также с ранее опубликованными глобальными моделями строения континентальной литосферы (Artemieva, 2006; Shapiro, Ritzwoller, 2002; Grand, 2002), которые говорят об утонении литосферы под Западно-Сибирской плитой. Но с другой стороны, положение подошвы литосферы на глубине 100 км под Восточно-Сибирской платформой никак не согласуется с данными приведенных выше региональных и глобальных работ, но зато оно достаточно близко к предлагаемым в настоящей работе (100-150 км – см. профиль A1-A2 на рис.3.24 и 3.27).

Рис.3.28. Скоростной и плотностной разрезы по линии Северная Атлантика – Сибирь (по Т.П. Егоровой и др.).

а – положение линии трансекта; б – скоростной разрез и аномалии теплового потока; в – плотностной разрез и расчетное гравитационное поле. 1 - слой морской воды; слои земной коры: 2 - осадочный; 3 - верхний; 4 промежуточный; 5 – нижний слой консолидированной коры; 6 – область разуплотнения верхней мантии (астеносфера); 7 – изолинии плотности, г/см³; 8 – плотностные границы.

Рисунок взят из работы («Геотраверс «Гранит»...», 2002)

Рис.3.29. Сейсмический разрез верхней мантии по профилю «Кимберлит»: 1 – изолинии скорости (км/с); 2 – отражающие границы; 3 – слои с пониженными скоростями; 4 – области повышенной гетерогенности. Рисунок взят из работы (Павленкова, 2011)

Рис.3.30. Распределение вычисленного и наблюденного теплового потока вдоль исследованного участка геотраверса «Гранит» из работы (Хачай и др., 2002). Крестиками нанесены экспериментальные значения, непрерывная кривая – вычисленное распределение плотности геотермического потока Еще одной спорной и не вполне согласующейся с ранее опубликованными глобальными моделями особенностью рассчитанного распределения мощности литосферы является участок аномального утолщения под Уральским горно-складчатым сооружением. Такой результат вычислений связан с тем, что по данным модели CRUST 2.0 (Bassin et al., 2000; Mooney et al, 1998) для данного региона задана относительно более легкая кора. Не отрицая необходимости дальнейших более детальных исследований для объяснения и/или устранения возникшего противоречия, отметим, что на разрезе Северная Атлантика – Сибирь («Геотраверс «Гранит»...», 2002) можно видеть, что под Уралом зоны мантийного разуплотнения действительно опускаются на глубины свыше 300 км. Так же косвенным свидетельством возможного утолщения литосферы под этим горным сооружением могут служить результаты моделирования распределения температур литосферы вдоль участка геотраверса «Гранит» (рис.3.30), выполненного в работах (Хачай, Дружинин, 1996; Хачай, Дружинин, 1998; Хачай и др., 2002).

Рассчитанное распределение мощности литосферы характеризуется высокими значения мощности (200-250 км) литосферы для остаточных бассейнов с корой субокеанического типа. На профиле Г1-Г2 показаны впадины Средиземного и Черного морей, на разрезе Д1-Д2 можно видеть утолщенную литосферу Южно- и Северо-Каспийской впадин, а профиль Е1-Е2 иллюстрирует утолщение литосферы под Мексиканским заливом. Такой эффект скорее всего связан с тем, что в данных бассейнах мощность относительно легких осадков может достигать десятков километров. Поэтому вследствие действия введенной в расчеты изостатической поправки этот недостаток массы должен быть скомпенсирован ее избытком снизу, что и приводит к утолщению мантийного прослоя литосферы. Тот факт, что это утолщение не фиксируется ни в термальной модели Артемьевой (Artemieva, Mooney, 2001; Artemieva, 2006), ни в сейсмотомографической модели Шапиро и Ритцволлера (Shapiro, Ritzwoller, 2002), заставляет предположить, что изостатическое равновесие может достигаться не за счет утолщения литосферы, а за счет утонения коры, или допустить, что условие локальной изостазии в данном регионе просто не выполняется или выполняется не полностью.

Вопрос относительно справедливости полученной в предлагаемой модели большой мощности литосферы в Черноморском и Каспийском бассейнах остается открытым, поскольку, несмотря на то, что эти результаты, как уже было сказано, явно противоречат моделям, приведенным в работах (Artemieva, 2006; Shapiro, Ritzwoller, 2002), они достаточно хорошо согласуются с данными сейсмотомографии по объемным волнам из модели Гранда (Grand, 2002). Таким образом, однозначного ответа вопрос о справедливости полу-

ченной оценки на данном этапе не имеет и требует дальнейших, более детальных исследований.

Отсутствие значительного утолщения литосферы под Канадским, Балтийским и Гвианским щитами, которое четко проявлено не только в термальной модели (Artemieva, 2006), но и в данных сейсмической томографии (как по поверхностным (Shapiro, Ritzwoller, 2002), так и по объемным (Grand, 2002) волнам), можно считать серьезным недостатком рассчитанной модели. Заметим при этом, что для выступов докембрийского фундамента на Индостанской плите полученные результаты уже лучше согласуются с данными томографии (Shapiro, Ritzwoller, 2002; Grand, 2002) по сравнению с моделью Артемьевой (Artemieva, 2006), которая предполагает в этом районе мощность литосферы в 200-250 км. В целом, несколько заниженные значения мощности литосферы под древними кратонами, скорее всего, связаны с тем, что при расчетах объемной теплогенерации по формуле (3.3) константы A_0 и H полагались неизменными для всех ячеек расчетной сетки. При этом в реальности величина радиоактивной теплогенерации значительным образом меняется при переходе от древних областей литосферы к молодым. Учет данного фактора должен позволить в дальнейшем получить более корректные значения мощности в областях развития наиболее древней литосферы.

Характер распределения мощности литосферы в областях активных континентальных окраин показан на разрезе Ж1-Ж2 на примере Японской зоны субдукции. Непосредственно под глубоководным желобом наблюдается утолщение литосферы до 150 км, соответствующее погружающемуся океаническому слэбу. Под энсиалической корой Японской островной дуги фиксируется утонение литосферы до 50 км, а в области задугового бассейна Японского моря – утолщение до 100 км.

Таким образом, приведенные результаты расчетов говорят о том, что, с одной стороны, полученная термальная мощность литосферы хорошо согласуется с представлениями о том, какая она должна быть под такими глобальными структурами как континентальные и океанические рифтовые системы, области внутриплитного океанического магматизма, древние платформы и пр. (см. напр. (Хаин, Ломизе, 2005; Никишин, 2002; Лобковский и др., 2004)). Тот факт, что рассчитанная мощность литосферы принимает ожидаемые значения в тех местах, где она считается хорошо известной, может считаться критерием правильности принятой в настоящей работе модели. С другой стороны, некоторые другие особенности распределения мощности литосферы, такие как значительное ее увеличение под Уральским орогеном, остаточными впадинами Черного, Средиземноморского и Каспийского бассейнов, задуговыми бассейнами типа Японского моря и пр., не вполне оче-

видны и могут быть предметом дальнейшего изучения, обсуждения и уточнения за счет использования новых, более детальных региональных материалов.

Проиллюстрированные выше недостатки предлагаемой температурно-плотностной модели литосферы указывают на необходимость ее дальнейшей доработки и совершенствования. Однако на данном этапе исследований эту модель можно считать пригодной для расчета сил разности гравитационного потенциала, необходимых для достижения главной цели настоящей работы – расчета глобального поля напряжений в литосфере Земли.

При моделировании отдельно рассматривался вариант, при котором уровень изостатической компенсации располагался в пределах мантийной литосферы, а не в астеносфере, как предлагалось выше. Такая постановка задачи, по сути, равнозначна предположению о плоской подошве литосферы.

Мощности и плотности льда, мягких и твердых осадков при расчетах этой модели брались по фактическим данным (модель CRUST 2.0), а в качестве рассчитываемой величины выступала суммарная мощность верхней, средней и нижней коры. Средняя плотность расчетного прослоя также являлась входным параметром по тем же (CRUST 2.0) исходным данным.

В виду того, что для распределения температур в земной коре не имеется такого надежного репера, как для литосферы (знание температуры на ее подошве), данная модель основывалась только на принципе локальной изостазии, без учета воздействия температуры на плотность слагающих кору пород (по формуле (3.12)).

Карта рассчитанной мощности земной коры приведена на рис.3.31, а на рис.3.32 разрез вдоль линии профиля Б1-Б2 иллюстрирует различия в мощностях расчетной земной коры и земной коры по фактическим данным. На этих рисунках хорошо видно, что в пределах океанической коры условие локальной изостазии на ее подошве не выполняется, т.к. почти повсеместно развиты отрицательные расчетные мощности. В континентальной коре локальная изостазия при таком выборе уровня компенсации может иметь место. Однако неучет температурного разуплотнения отражается здесь в том, что полученное в модели положение подошвы земной коры оказывается как бы «приподнятым» над подошвой коры, фиксируемой при наблюдениях.

Такой подход, при котором рассчитывается мощность не мантийной части литосферы, а суммарная мощность верхней, нижней и средней коры, необходим для того, чтобы была возможность сравнить поля напряжений, полученные в моделях литосферы с различным положением уровня изостатической компенсации в ней. Это может позволить дать ответ на вопрос, насколько вообще допустимо приближение плоской подошвы литосферы при геодинамическом моделировании.

Рис.3.31. Мощность земной коры, рассчитанная из предположения о плоской подошве литосферы

Рис.3.32. Разрез земной коры вдоль линии Б1-Б2.

Сплошной линией показана подошва коры по данным модели Crust 2.0, прерывистой – подошва рассчитанной земной коры.

Прочие обозначения – согласно принятым на рис.3.24

3.4. Прочность литосферы

Как говорилось выше (см. гл.2), расчет прочностных свойств литосферы необходим для учета в модели неупругого поведения среды.

Прочность литосферы рассчитывалась из реологического профиля (рис.3.33), который представляет собой комбинацию профилей прочности в хрупком и пластическом режимах (Ranalli, 1995).

Согласно (Левин и др., 2007, 2009, 2010) к зоне перехода от хрупкого режима к пластическому приурочены значительные изменения в характере взаимодействия флюидов с горными породами.

Функции распределения по глубине напряжений сжатия $s_{comp}(z)$ и растяжения $s_{tens}(z)$ являются (Ranalli, 1995; Ершов, 1999; Ershov, Stephenson, 2006) минимумом по абсолютному значению из

$$s_{\text{yield}}(z) = kr(z)gz, \qquad (3.18)$$

где r(z) – плотность литосферы, зависящая от глубины; $s_{yield}(z) = s_{comp}(z)$ при k = 2 и $s_{yield}(z) = s_{tens}(z)$ при k = -0.5, и

$$s_{yield}(z) = sign \cdot \left(e \frac{1}{A_p} \exp\left(\frac{E_p}{RT(z)}\right)\right)^{1/N},$$
(3.19)

где *е* – скорость деформации (10⁻¹⁴ с⁻¹); *R* – универсальная газовая постоянная (8,31 Дж/(моль·К)), T(z) – абсолютная температура, зависящая от глубины; A_p, E_p, N – материальные постоянные, значения которых приведены в табл.1; $s_{yield}(z) = s_{comp}(z)$ при sign = 1 и $s_{yield}(z) = s_{tens}(z)$ при sign = -1.

Для расчета прочности литосферы на сжатие и растяжение (s_{comp}^{lim} и s_{tens}^{lim}) необходимо рассчитать интегралы $s_{comp}(z)$ и $s_{tens}(z)$ по глубине.

На рис.3.34 и рис.3.35 показаны результаты расчетов прочности литосферы на сжатие при учете и не учете изостатической поправки при расчете распределения температур в океанической литосфере соответственно.

Табл. 1. Значения параметров, используемые при расчетах

Параметр	Верхняя кора	Нижняя кора	Литосферная ман- тия	Единица изме-
Степенной фак- тор, <i>N</i>	2.72	3.05	3.6	-
Энергия актива- ции, <i>Е</i> _р	134	276	530	10 ³ Дж/моль
Приэкспонеци- альный фактор, А _р	6.03×10 ⁻²⁴	3.16×10 ⁻²⁰	7.2×10 ⁻¹⁸	1/c∏a ^N

Рис.3.34. Расчетная прочность литосферы на сжатие. Модель, не учитывающая изостатическую поправку для океанической литосферы

Рис.3.35. Расчетная прочность литосферы на сжатие. Модель, учитывающая изостатическую поправку для океанической литосферы

3.5. Принцип оценки сил разности гравитационного потенциала (обобщенных топографических сил)

Под обобщенными топографическими силами понимаются тектонические силы, возникающие вследствие наличия неоднородности мощностей и/или плотностей коровых и мантийного слоев литосферы. Силы отталкивания от хребта (силы, действующие в пределах океанической литосферы) и топографические силы (силы, действующих в пределах континентов) являются частными случаями обобщенных топографических сил.

Количественная оценка величины этих сил выполнялась путем расчета разности гравитационной потенциальной энергии в соседних по латерали областях литосферы (Artyushkov, 1973; Артюшков, 1979). Общие принципы этих вычислений (как для сил отталкивания от хребта, так и для топографических сил на континентах) продемонстрированы на рис.3.36-3.38.

На рис.3.36 показано, что количественная оценка силы отталкивания от хребта, действующая от самого срединно-океанического хребта к некоторой точке в океане, может быть выполнена с помощью расчета разности площади фигуры OCD и OABCD на графике зависимости литостатического давления от глубины. Напомним, что литостатическое давление, создаваемое тем или иным прослоем литосферы, рассчитывается как произведение его плотности и мощности, умноженное на ускорение свободного падения.

Практически аналогично производится расчет силы отталкивания от хребта между двумя произвольно выбранными точками в пределах океанского ложа. В этом случае необходимо вычислить разницу между площадями фигур $OA^1B^1B^2C$ и OA^2B^2C на соответствующем графике на рис.3.37.

Топографические силы на континентах рассчитывались так, как показано на рис.3.38 – из разности площадей многоугольников O²A²B²B¹C и O¹A¹B¹C.

Таким образом, приведенные примеры демонстрируют отсутствие каких-либо принципиальных различий в методике расчета сил отталкивания от хребта и топографических сил.

В настоящей работе, обобщенная топографическая сила в текущем узле расчетной сетки определялась как сумма четырех векторов, амплитуда каждого из которых является разностью интегралов литостатического давления в соседних ячейках, а направление ортогонально границе ячеек.

Схожая количественная оценка гравитационного потенциала в связи с влиянием изменения его величины на напряженное состояние в литосфере Земли была произведена в работе (Coblentz et al.,1994). Методика их расчетов в целом аналогична описанной выше

Рис.3.36. Принцип расчета силы отталкивания от хребта F, действующая от хребта (точка 1) к точке 2

Рис.3.37. Принцип расчета силы отталкивания от хребта F, действующая между произвольными точками 1 и 2

Рис.3.38. Принцип расчета топографических сил для континентов между точками 1 и 2 R – рельеф; УИК – уровень изостатической компенсации; УМО – уровень мирового океана; $H_w^{(1)}, H_c^{(1)}, H_L^{(1)}, H_a^{(1)}$ – мощность водного, корового, литосферного и астеносферного слоев в т.1; $H_w^{(2)}, H_c^{(2)}, H_L^{(2)}, H_a^{(2)}$ – мощность водного, корового, литосферного и астеносферного слоев в т.2; r_w, r_c, r_L, r_a – плотности воды, земной коры, литосферы и астеносферы; $P_w^{(1)}, P_c^{(1)}, P_L^{(1)}, P_a^{(1)}$ – давления водного, корового, литосферного и астеносферного столбов в т.1; $P_w^{(2)}, P_c^{(2)}, P_L^{(2)}, P_a^{(2)}$ – давления водного, корового, литосферного и астеносферного столбов в т.2;

за двумя исключениями: во-первых, в настоящей работе из принципа локальной изостазии рассчитывалась подошва литосферы (мощность и плотность коровых слоев выступали в качестве входных данных), в то время как в работе (Coblentz et al.,1994) глубине подошвы континентальной и древней океанической литосферы присваивалось постоянное значение (125 км), а в качестве рассчитываемой величины выступала мощность земной коры (плотности континентальной и океанической коры также задавались константами); во-вторых: в работе (Coblentz et al.,1994) была принята линейная тепловая модель литосферы при постоянной (0°С) температуре на поверхности Земли.

3.6. Методика расчета литосферных складок

Системы антиклиналеподобных структур, наблюдающиеся в Индийском океане (Zuber, 1987), Австралии (Stephenson, Lambeck, 1985), Канаде (Stephenson et al., 1990), центральной Азии (Nikishin et al., 1993; Burov et al., 1993) и в пределах территории Евразии (Nikishin et al., 1997), были интерпретированы этими авторами как литосферные складки, возникающие в результате действия тектонических напряжений. Моделирование возникновения литосферных складок обычно сводится к численному решению методом конечных разностей дифференциального уравнения изгиба упругой плиты (Ershov, 1999; Коротаев и др., 2002; Коротаев и др., 2004).

В настоящей работе произведен расчет литосферных складок, возникающих в результате воздействия глобального поля напряжений, полученного в результате вычислений по предлагаемой здесь методике. Это моделирование имело своей целью оценить способность литосферных напряжений формировать перечисленные выше структуры.

Методика расчета литосферных складок сводится к следующему.

Зная значения тензора напряжений s_{ij} (см. выше уравнение (3.16)) можно получить величины, соответствующие главным осям этого тензора, – s_{comp} (ось сжатия) и s_{tens} (ось растяжения). Для краткости изложения в нижеприведенных формулах оперируется обобщенным выражением s, предполагая, что соответствующие расчеты производятся как для сжимающих s_{comp} , так и растягивающий напряжений s_{tens} .

Для каждой ячейки расчетной сетки рассчитывалось распределение по глубине эффективного упругого модуля (*E_n*):

$$E_n(z) = e(z) \cdot \frac{s_n(z)}{s(z)}, \qquad (3.20)$$

где e(z) – модуль Юнга на глубине, соответствующей отметке z, s(z) – девиаторные значения расчетных напряжений, а $s_n(z)$ определяется как

$$s_{n}(z) = \begin{cases} s(z) & \text{при } s(z) < s_{yield}(z) \\ s_{yield}(z) & \text{при } s(z) \ge s_{yield}(z) \end{cases}$$
(3.21)

где s_{yield} – прочность литосферы, рассчитанная по описанной выше (см. 3.4) методике.

Из эффективного упругого модуля E_n можно рассчитать среднюю линию литосферы w_m по следующей формуле

$$w_{m} = \frac{\int_{z_{1}}^{z_{2}} E_{n} z \, dz}{\int_{z_{1}}^{z_{2}} E_{n} \, dz},$$
(3.22)

где пределы интегрирования z_1 и z_2 в случае расчетов для всей толщины литосферы должны меняться от z_0 до $z_0 + H_L$ как в уравнениях (3.15,3.16). Результаты расчета средней линии литосферы Земли показаны на рис.3.39.

Изгибная жесткость D рассчитывается из уравнения

$$D = \int_{z_1}^{z_2} E_n (z - w_m)^2 dz.$$
 (3.23)

Эффективная упругая мощность (Zuber et al., 1989; Burov, Diament, 1995) *EET* получается по формуле

$$EET = \left(\frac{12(1-n^2)D}{}\right)^{1/3},$$
(3.24)

где *n* – коэффициент Пуассона, а <*E* > – некоторый репрезентативный модуль Юнга, например усредненный по вертикальной колонке:

$$\langle E \rangle = \frac{1}{z_2 - z_1} \cdot \int_{z_1}^{z_2} E \, dz.$$
 (3.25)

Уравнение изгиба упругой пластины для двумерного случая имеет вид

$$\sum_{ij} \frac{d^2}{dx_i} \left(D \cdot \frac{d^2 w}{dx_j^2} \right) + \sum_{ij} \frac{d}{dx_i} \left(N_{ij} \cdot \frac{d(w + w_m)}{dx_i} \right) + rgw = q, \qquad (3.26)$$

где *q* – вертикальная нагрузка (например, давление горного сооружения или нагрузка от литосферного корня), *r* – плотность пород, *g* – ускорение сводного падения, *w* – собственно амплитуда изгиба литосферы, а N_{ii} рассчитывается как

Рис.3.39. Расчетная средняя линия литосферы

Рис.3.40. Глобальная модель распределения амплитуды литосферных складок

$$N_{ij} = \int_{z_1}^{z_2} s_{ij} \, dz. \tag{3.27}$$

На рис.3.40 приведены результаты расчета амплитуды изгиба *w* литосферы Земли, полученной в результате расчетов по формуле (3.26) на основании приложенных напряжений (*s_{ij}* в формуле (3.16)) из глобальной модели, которая считается наилучшей (см. ниже) из предлагаемых в настоящей работе.

Решение уравнения производилось с помощью неявной численной схемы в среде MATLAB6.5 с использованием встроенных в нее алгоритмов решения систем уравнений с разреженными матрицами.

Важно отметить, что при разрешении выполненных расчетов $1^{\circ} \times 1^{\circ}$ размер ячейки расчетной сетки достаточно большой – длина ее стороны составляет около 100 км. При том, что характерный размер длины литосферных складок обычно составляет несколько сотен км, понятно, что рассчитанная в рамках настоящей модели карта изгиба литосферы (рис.3.40) может не вполне точно отражать реальную картину распределения амплитуды литосферных складок. Однако разработанная методика может быть применена для построения более детальных локальных моделей, имеющих необходимое разрешение для выявления некоторых особенностей изгиба литосферы в том или ином регионе.

Глава 4. Результаты глобального моделирования

В данной главе приводятся результаты моделирования глобального поля напряжений в литосфере Земли с использованием методик и подходов, описанных выше.

В качестве критерия, определяющего соответствие любой модели действительности, обычно принимается степень совпадения расчетных результатов с наблюдаемыми данными по моделируемой величине. В настоящей работе главным моделируемым параметром является поле напряжений, поэтому фактическими данными, сравнение с которыми определяло качество модели, были выбраны замеры, представленные в базе данных международного исследовательского проекта «Мировая Карта Напряжений» (Zoback et al., 1989; Zoback, Zoback, 1991; Zoback, 1992; Heidbach et al., 2004; Heidbach et al., 2008).

При этом важно иметь в виду, что решение обратной задачи нахождения поля напряжений по имеющимся точкам замера неединственно (Galybin, Mukhamediev, 1999; Myхамедиев, 2000; Мухамедиев, Галыбин, 2001; Mukhamediev, 2002; Mukhamediev et al., 2006). Отсюда, вообще говоря, следует, что может существовать целый набор моделей, существенно различающихся между собой, но одинаково хорошо соответствующих фактическим данным. Однако, тем не менее, проблематично предложить более адекватный критерий правильности модели, нежели соответствие расчетных данных фактическим.

В первой части данной главы (4.1) представлена предлагаемая в настоящей работе методика статистической обработки данных «Мировой Карты Напряжений», а также результаты этой обработки. Статистический анализ позволяет перейти от нерегулярно размещенных в пространстве замеров, содержащихся в базе данных, к карте равномерно распределенных по сетке напряжений. Наличие такой карты делает возможным не только качественное, но и количественное сопоставление результатов модельных построений с фактическими данными, что крайне ценно с точки зрения объективности оценки той или иной модели в плане ее соответствия наблюдаемому распределению.

Очевидно, что полученное в результате численного моделирования поле напряжений будет сильно зависеть от входных параметров (свойства литосферы: плотность, упругие модули, прочность; обобщенные топографические силы; реологическая модель литосферы: чисто упругая или упруго-пластическая; характер взаимодействия вдоль границ литосферных плит), которые были заложены при вычислениях конкретной модели. Поэтому для оценки степени и характера влияния на итоги расчетов того или иного входного параметра был построен набор моделей при различных свойствах литосферы, реологических моделях и условиях на границах плит. В разделе 4.2 производится описание и сравнение

друг с другом (а также с результатами моделирования, полученными в ранее опубликованных работах (Bird, 1998; Bird, Liu, 1999; Lithgow-Bertelloni, Guynn, 2004)) наиболее показательных из полученных распределений.

Заключительная часть данной главы (4.3) посвящена обсуждению результатов наилучшей из предлагаемых в настоящей работе моделей в сравнении с фактическими данными, а также результатами их усреднения по методике, приведенной в (4.1).

4.1. Интерполяция и экстраполяция данных «Мировой Карты Напряжений»

Одним из главных недостатков любой базы данных напряженного состояния в земной коре или литосфере является неравномерность распространения замеров. При использовании этих данных для сравнения с результатами моделирования, которые обычно имеют равномерное пространственное распределение, эта проблема встает особенно остро. Поэтому необходим подход, позволяющий усреднять данные замеров в областях, где их плотность относительно высока, и экстраполировать информацию на районы, характеризующиеся отсутствием или малым числом данных.

Первые работы по усреднению данных «Мировой Карты Напряжений» в глобальном (Zoback, 1992) и региональном (Müller et al., 1992) масштабах носили исключительно качественный характер (см. рис.4.1 и рис. 5.20 соответственно). Однако, слишком высокая доля субъективизма, присущая визуальному обобщению информации, не позволяет считать такую методику надежной.

Глобальная карта распределения напряжений, полученного в результате статистической обработки фактических данных, впервые была представлена в работе (Coblentz, Richardson, 1995). В этой работе в качестве входной информации использовались 4537 замеров, соответствующих качеству А-С, из «Мировой Карты Напряжений» 1992 года выпуска. Средняя ориентировка оси сжатия для ячейки размером 5°х5° определялась как среднее значение ориентировок проекций на горизонтальную плоскость главных осей сжатия по данным замеров, попадающих в эту ячейку. Из 582 ячеек, для которых эта ориентировка была определена, 200 ячеек содержали только один замер. Поэтому оценивать величину дисперсии вычисленной средней величины имело смысл только для оставшихся 382 ячеек, в пределах которых содержалось два или более замеров. Существенной проблемой, с которой столкнулись авторы, было превышение дисперсией допустимых значений в 196 из этих 382 ячеек (т.е. более чем в половине случаев).

Рис.4.1. Результаты визуального усреднения Мировой Карты Напряжений из работы (Zoback, 1992) Тонкими линиями показаны линии, соответствующие абсолютным скоростям движения плит по (Minster, Jordan, 1978); толстыми направленными друг на друга стрелками показаны главные оси сжатия взбросовых режимов; толстыми направленными в разные стороны стрелками показаны главные оси растяжения сбросовых режимов; сочетание толстых направленных друг на друга и тонких направленных в разные стороны стрелок иллюстрирует ориентировку главных осей сжатия и растяжения соответственно для сдвиговых режимов

Полученные в работе (Coblentz, Richardson, 1995) большие значения дисперсии для значительного количества ячеек, в которых была определена средняя ориентировка осей сжатия, главным образом связаны с тем, что при расчетах использовался постоянный (примерно 250 км) радиус усреднения. Поэтому в более поздних работах (Heidbach et al., 2007; Heidbach et al., 2010) было предложено производить усреднение для разных ячеек сетки с различным радиусом (рис.4.3). Выбор области усреднения для текущей ячейки производился путем последовательного перебора (в диапазоне от 1000 км до 100 км с шагом 100 км) величины радиуса окружности, имеющей своим центром середину ячейки. Для каждого радиуса при этом переборе определялось стандартное отклонение среднего значения ориентировки оси сжатия (вклад в среднее значение от каждого замера имел прямую зависимость от его качества и обратную от расстояния между положением эпицентра замера и центром текущей ячейки). В случае если это отклонение не превышало заданную величину, перебор прекращался и для текущей ячейки фиксировался соответствующий радиус усреднения.

Рис.4.2. Результаты статистического усреднения «Мировой Карты Напряжений» из работы (Coblentz, Richardson, 1995)

Черными линиями показаны ориентировки главных осей сжатия, усредненные по ячейкам 5°х5°, в которые попадало два и более замеров; черные кружки в центре линии иллюстрируют большую величину дисперсии при усреднении, белые кружки – малую

Рис.4.3. Результаты статистического усреднения «Мировой Карты Напряжений» из работы (Heidbach et al., 2010)

Черными линиями показаны усредненные ориентировки главных осей сжатия; цветом иллюстрируется величина радиуса усреднения

Таким образом, в работе (Heidbach et al., 2010) в результате было получено распределение ориентировок главных осей сжатия на равномерной сетке; при этом каждый элемент этого распределения был получен в результате усреднения при стандартном отклонении, не превышающем заданный порог. При таком подходе величина радиуса усреднения может рассматриваться в качестве меры степени неоднородности напряженного состояния того или иного региона Земли (чем больше этот радиус, тем более однородное поле напряжений).

В работах (Ребецкий, 1999; Ребецкий, 2003) для реконструкции параметров напряженного состояния по данным о механизмах землетрясений предлагается метод катакластического анализа. Данный подход позволяет не только определить ориентацию главных осей напряжений, но и оценить значения максимальных касательных напряжений и эффективного всестороннего давления. В рамках этой методики выделяется три этапа. На первом этапе производится определение ориентировки главных осей тензора напряжений и значений коэффициента Лоде-Надаи путем выбора из всех возможных напряженных состояний такого, для которого достигается максимум диссипации накопленной в упругих деформациях энергии. На втором этапе реконструкции с помощью анализа на диаграмме Мора распределения механизмов землетрясений из однородной выборки оцениваются величины напряжений (с точностью до неизвестного значения внутреннего сцепления горных пород). На третьем этапе выполняется расчет значений флюидного давления и внутреннего сцепления. Разработанный алгоритм был успешно применен для реконструкции поля напряжений в пределах западного фланга Зондской субдукционной зоны до Суматра-Андаманского землетрясения 2004 г. (Ребецкий, Маринин, 2006)

Существенный недостаток, которым обладают предложенные в работах (Coblentz, Richardson, 1995; Heidbach et al., 2010) подходы, заключается в том, что в качестве величины, среднее значение которой различными способами авторы пытались определить, выступала ориентировка *проекции на горизонтальную плоскость* главной оси сжатия. При этом основной информацией, представленной в «Мировой Карте Напряжений», является положение главных осей зафиксированных напряжений *в пространстве*. Таким образом, уже на этапе отбора информации для статистического анализа терялась значительная ее часть – вместо полноценного трехмерного тензора напряжений использовалась лишь ориентировка горизонтальной составляющей одной из его главных осей. В итоге, полученное путем такой обработки поле напряжений, по сути, двумерно (способно характеризовать только горизонтальную составляющую реального распределения), а также не несет никакой информации о тектоническом режиме – преобладании сжимающих, растягивающих или сдвиговых напряжений – в том или ином регионе. При этом отметим, что в работе

(Coblentz, Richardson, 1995) определение усредненного режима напряжений производилось. Однако данная процедура сводилась к тому, что каждому замеру, в зависимости от зафиксированного в нем режима напряжений присваивалось некоторое числовое значение (от 0 при взбросовом режиме до 1 при сбросовом), а затем производилось усреднение этих величин для событий, попавших в соответствующую выборку. Понятно, что такой подход до конца корректным считаться не может.

В настоящей работе предлагается методика статистического анализа фактических данных по напряженному состоянию в литосфере Земли, предполагающая учет информации о положении главных осей напряжений в трехмерном пространстве, а также представлены результаты применения разработанного подхода на примере обработки замеров «Мировой Карты Напряжений» 2008 года выпуска (Heidbach et al., 2008).

Методика обработки фактических данных состоит в следующем. Информация о положении в пространстве главных осей напряжений переводится в тензорный вид для всех замеров. Далее для определения среднего напряжения в рамках какой-либо выборки выполняется расчет среднего арифметического для каждой из шести независимый компонент тензора. Полученный таким образом «средний» тензор напряжений преобразовывается к более удобному для визуализации и понимания виду – ориентировке главных его осей в пространстве. Таким образом, на выходе получаются равномерно распределенные по расчетной сетке тензоры усредненных напряжений, которые могут быть представлены в виде положения в пространстве их главных осей.

Понятно, что наиболее проблематичным моментом в этом подходе оказывается определение того, какие события из используемой базы данных необходимо поместить в выборку при определении среднего тензора напряжений для той или иной ячейки расчетной сетки. В такую выборку предлагается помещать события, пространственное положение которых таково, что расстояние от эпицентра до центра ячейки меньше некоторой величины, называемой радиусом усреднения.

Для определения радиуса усреднения предложено два подхода: в первом случае он полагался постоянным (рассчитаны модели, соответствующие радиусам в 100, 200, 300, 400, 500 и 600 км), а во втором – определялся по методике, которая, в целом, похожа на предложенную в работе (Heidbach et al., 2010). Второй подход сводится к выбору среди набора радиусов, меняющихся в диапазоне от 2000 до 50 км с шагом 50 км, такого, при котором средняя для шести компонент тензора дисперсия не превышает заданную величину (в рамках данной работы эта величина принимала значения 0,1; 0,15 или 0,2). Вес каждого замера в выборке при определении среднего значения одинаков (т.е. он не зависит ни от качества данных, ни от расстояния до центра текущей ячейки, ни от магнитуды

события). Минимальное количество замеров в рамках радиуса усреднения, необходимое для того, чтобы ячейка считалась «заполненной», принималось равным 1 или 5. Режим полученных таким образом для каждой «заполненной» ячейки расчетной сетки напряжений (взбросовый, сбросовый, взбросо-сдвиговый или сбросо-сдвиговый) определялся согласно классификации, принятой в «Мировой Карте Напряжений», из величины угла между главными осями тензора и горизонтальной плоскостью.

В качестве входной информации при расчетах, результаты которых обсуждаются в настоящей работе, использовались все замеры «Мировой Карты Напряжений»-2008, имеющие данные о положении главных осей напряжений и качеством не ниже категории C (рис.4.4). Отметим, что релиз 2008 года содержит 21750 замеров, что почти в три раза больше по сравнению с «Мировой Картой Напряжений» 1992 года выпуска. При этом почти 17000 замеров соответствуют категории качества от A до C (т.е. для этих замеров ориентировка проекции на горизонтальную плоскость главной оси сжатия определена с точностью не ниже, чем $\pm 25^{\circ}$). В отличие от работы (Heidbach et al., 2010) данные, которые помечены как замеры, соответствующие событиям, приуроченным к границам литосферных плит (так называемые «PBE» (plate boundary events)), из рассмотрения при обработке не исключались. Разрешение расчетной сетки совпадало с разрешением моделирования глобального поля напряжений и составляло $1^{\circ}x1^{\circ}$.

На рис.4.5 показаны результаты обработки данных «Мировой Карты Напряжений», полученные при переменном радиусе усреднения, определявшемся из условия непревышения дисперсией среднего тензора величины 0,15 (минимальное допустимое количество событий равно 5). На этом рисунке линиями различных цветов показаны ориентировки главных осей сжатия для взбросовых, взбросо-сдвиговых и сдвиговых режимов и главных осей растяжения для сбросовых и сбросо-сдвиговых режимов. «Заполненные» ячейки расчетной сетки на этой карте закрашены цветом, отражающим радиус усреднения, использовавшийся для получения соответствующего среднего тензора.

В полученном поле напряжений можно выделить следующие главные особенности:

1) вдоль спрединговых границ (а также в прилегающих к этим границам внутриплитных океанических областях) преобладают сбросовые типы напряжений (исключениями являются Восточно-Тихоокеанский и Австрало-Антарктический срединноокеанические хребты, к которым главным образом приурочены сдвиговые режимы);

2) в пределах Восточно-Африканской, Красноморской и Байкальской континентальных рифтовых систем также четко фиксируется доминирование сбросовых напряжений. Отметим, что в случае и океанических, и континентальных дивергентных границ ориентировка главных осей растяжения почти всегда перпендикулярна их простиранию;

Рис.4.4. Распределение напряжений по данным «Мировой Карты Напряжений». Синими линиями показаны ориентировки проекций на горизонтальную плоскость главных осей сжатия для взбросовых и взбросо-сдвиговых режимов, красными линями – главных осей растяжения для сбросовых и сбросо-сдвиговых режимов, зелеными линиями – главных осей сжатия для сдвиговых режимов.

Рис.4.5. Напряженное состояние в литосфере Земли по результатам усреднения данных «Мировой Карты Напряжений» (переменный радиус усреднения; максимальная допустимая дисперсия – 0,15; минимальное количество событий 5). Синими линиями показаны ориентировки проекций на горизонтальную плоскость главных осей сжатия для взбросовых и взбросо-сдвиговых режимов, красными линями – главных осей растяжения для сбросовых и сбросо-сдвиговых режимов, красными линями – главных осей растяжения для сбросовых и сбросо-сдвиговых режимов. Градиентной заливкой показан использовавшийся радиус усреднения

 в зонах субдукции западной части Тихого океана (Японская и Курило-Камчатская), а также в центральной части Андской зоны субдукции хорошо выражен взбросовый характер напряженного состояния. Главные оси сжатия в данном случае ориентированы перпендикулярно конвергентным границам;

4) в юго-западной части Северо-Американского континента (области развития разлома Сан-Андреас) преобладают напряжения сдвигового типа;

5) в пределах северо-восточной части Северной Америки и центральной части Африканского и Южно-Американского континентов имеют место взбросовые напряжения, характеризующиеся главным образом субширотной (местами до СЗ-ЮВ) ориентировкой главных осей сжатия;

6) вся Австралия находится под воздействием напряжений взбросового типа; причем главные оси сжатия меняют свое субширотное простирание в западной части континента на СВ-ЮЗ в восточной;

7) взбросовые режимы напряжений, характеризующиеся субмеридиональной ориентировкой главных осей сжатия, распространены в северо-западной части Северной Америки и центральной части Евразийского континента.

Как говорилось выше, определенная для каждой «заполненной» расчетной сетки величина радиуса усреднения определяет степень однородности напряженного состояния. Поэтому в работе (Heidbach et al., 2010) поле напряжений районов, характеризующихся небольшими значениями радиуса усреднения, считается порожденным силами, связанными с локальными плотностными неоднородностями и активными системами разломов. При этом участки литосферы, на которых при расчете средних напряжений использовался большой радиус усреднения, полагаются регионами, напряженное состояние которых главным образом контролируется так называемыми «силами границ литосферных плит», которые передаются на большие расстояния во внутриплитные области. Однако, такое противопоставление «внутрилитсоферных» и «граничных» сил не является до конца корректным, потому что, скажем, силы отталкивания от хребта, позиционирующиеся как пример «граничных» сил, на самом деле являются частным случаем сил разности гравитационного потенциала, связанных с плотностными неоднородностями внутри литосферы (т.е. тех сил, которые в (Heidbach et al., 2010) называются «внутрилитсоферными»). Поэтому в настоящей работе при численном моделировании поля напряжений силы отталкивания от хребта не привязывались к океаническим рифтовым системам, а распределялись по всей океанической литосфере, рассчитываясь по той же схеме, что и силы плотностных неоднородностей на континентах.

На рис.4.5 градиентной заливкой показан радиус усреднения, который использовался при расчете средних напряжений. Из приведенной иллюстрации видно, что наибольшая неоднородность литосферных напряжений имеет место в пределах Альпийско-Гималайского складчатого пояса, вдоль большинства субдукционных границ (за исключением центральной части Андской зоны субдукции) и на некоторых участках всемирной рифтовой системы. Более однородное распределение напряжений фиксируются в Австралии, в большей части Африки, Северной и Южной Америки, а также на значительных пространствах мирового океана.

Если говорить о зависимости полученных в результате статистического анализа распределений напряжений от параметров этой обработки (постоянный или переменный радиус усреднения, минимальное допустимое количество замеров при определении средних значений компонент тензора, максимальная допустимая дисперсия при выборе радиуса усреднения), то отмечаются следующие закономерности.

При постоянном радиусе усреднения «заполненными» оказываются в основном те ячейки, которые непосредственно прилегают (т.е. отстоят на расстояние, не большее чем заданный радиус) к областям, содержащим значительное число замеров. Главным образом, замеры базы данных «Мировой Карты Напряжений» сконцентрированы вдоль границ литосферных плит, но существуют и внутриплитные области, характеризующиеся значительной плотностью замеров (например, Австралия, западная часть Северной Америки, Европа и пр.). При увеличении радиуса усреднения от 100 до 600 км происходит закономерное и постепенное увеличение числа «заполненных» ячеек. При этом результаты расчетов в пределах одного радиуса усреднения мало зависят от того, какое минимальное допустимое количество замеров (1 или 5) задано. Разница относительно ощутимо проявляется только в пределах внутренней части Тихоокеанской плиты, где к областям развития современного плюмового магматизма приурочены единичные замеры, которые в одном случае позволяют «заполнить» соответствующие ячейки, а в другом – нет.

В случае, когда радиус усреднения для каждой ячейки определялся из условия непревышения дисперсией среднего тензора заданной величины (0,1; 0,15 или 0,2), отмечается достаточно высокая чувствительность итогового распределения напряжений к этому параметру. Чем выше значение допустимой дисперсии, тем меньше «незаполненных» ячеек в расчетной сетке и тем больше степень генерализации при усреднении фактических данных. Влияние минимального допустимого количества замеров наиболее интенсивно проявляется при минимальном из рассмотренных значении допустимой дисперсии (0,1). Это в первую очередь отражается в значительном уменьшении числа «заполненных» ячеек при его увеличении с 1 до 5.

В целом, подход к обработке данных по замерам напряженного состояния, который предполагает, что дисперсия усредненного тензора напряжений в каждой из «заполненных» ячеек расчетной сетки не превышает некоторую наперед заданную величину, выглядит более целесообразным по сравнению с методикой, основанной на использовании постоянного радиуса усреднения. Это связано с тем, что при определении рабочей выборки с помощью постоянного радиуса, полученные средние значения для разных ячеек характеризуются различной дисперсией и, следовательно, не могут рассматриваться в качестве однородной информации (это информация различной степени достоверности).

Результаты статистической обработки данных «Мировой Карты Напряжений» были использованы для количественной оценки степени соответствия между фактическими данными и численными моделями напряженного состояния литосферы Земли, полученными в рамках настоящей работы. Обычно в качестве критерия соответствия расчетных данных фактическим используются степень совпадения режима деформации (процентная доля совпадений по отношению к общему числу точек сравнения) и/или среднеквадратичная разница углов между главными осями расчетного и наблюдаемого тензоров напряжений (Burbidge, 2004; Liu, Bird, 2002). В настоящей работе предлагается альтернативный критерий. Для каждой «заполненной» в результате усреднения данных «Мировой Карты Напряжений» ячейки рассчитывалось три квадрата разницы между независимыми горизонтальными компонентами расчетного и «фактического» тензора (под «фактическим» в данном случае понимается тензор, полученный в результате усреднения). Среднее значение этих квадратов и определяет степень соответствия модельных расчетов наблюдаемым данным в текущей ячейке. Такой подход позволяет получить наиболее независимую и объективную меру соответствия модельных построений наблюдаемым данным, что крайне полезно не только с точки зрения оценки рассчитанной модели, но и с позиций возможности выбора правильного направления коррекции входных параметров моделирования для получения в модели более хорошо отражающих реальность результатов.

Для оценки качества расчетной модели в целом на основании знания степени ее соответствия фактическим данным в отдельных ячейках могут быть использованы различные подходы, наиболее простым из которых является оценка среднего арифметического значения среди полученных в ячейках величин. Однако существенным недостатком такого способа является тот факт, что даже при хорошем соответствии в большинстве ячеек наличие всего нескольких, в которых отклонения очень большие, может идентифицировать модель как плохую. Поэтому более правильно просто оценивать число ячеек, в которых отклонение не превышает некоторое заданное значение.

Отметим, что существенную неоднозначность в оценку качества модели вносит тот факт, что в зависимости от применяемого подхода к усреднению данных замеров (постоянный или меняющийся радиус, величина максимальной дисперсии, минимальное количество замеров в пределах радиуса усреднения) будут получаться различные наборы данных, которые при оценке величины отклонения в ячейке будут выступать как «фактические». Поэтому, в принципе, одна и та же расчетная модель напряжений может быть классифицирована как «хорошая» при сравнении с результатами усреднения «Мировой Карты Напряжений», полученными при одном наборе параметров этого усреднения, и как «плохая» при сопоставлении с данными, полученными при других параметрах обработки той же базы. Поэтому все выводы о степени соответствия той или иной из рассчитанных глобальных моделей фактическим данных сделаны на основании сравнения результатов моделирования с результатами *одного* из вариантов обработки данных «Мировой Карты Напряжений», который представлен на рис.4.5 и получен при соответствующих параметрах усреднения.

Полученные в рамках данной работы наборы карт усредненного поля напряжений представляют собой самостоятельную научную ценность, поскольку они отражают генерализованную картину распределения напряжений в литосфере Земли, что может позволить сделать некоторые выводы применительно к геодинамике того или иного региона.

4.2. Рассчитанные модели глобального поля напряжений

В данном разделе представлены четыре модели глобального поля напряжений, которые наиболее показательны среди всех рассчитанных. Отличия между этими моделями заключаются в том, что две из них (модель 1 на рис.4.6 и модель 3 на рис.4.8) рассчитаны на сплошной, «неразрезанной» сетке, а две другие (модель 2 на рис.4.7 и модель 4 на рис.4.9) получены при «разрезании» сетки вдоль границ литосферных плит. При этом модели 1 и 2 рассчитаны при действии топографических сил, полученных из модели литосферы, учитывающей изостатическую поправку в океанах (см. 3.2), а при вычислении сил гравитационного потенциала в моделях 3 и 4 температурно-плотностная модель океанической литосферы рассчитывалась только на основании ее возраста.

Пространственное положение и геотектонический тип границ, по которым производилось «разрезание» в моделях 2 и 4, были взяты по данным цифровой модели П.Берда (Bird, 2003). Важно отметить, что в моделях с «разрезанными» плитами коэффициент взаимодействия (см. 2.6) вдоль их границ для районов континентальной коллизии был равен 1; для регионов современного спрединга и рифтинга – 0,1; для субдукционных зон – 0,5; трансформных границ – 0,25.

Расчетное распределение напряжений модели 1 (учитывающей изостатическую поправку в океанах и не имеющей «разрезов» на расчетной сетке) характеризуется следующими особенностями:

1) четко выраженное растяжение вдоль всей протяженности всемирной системы срединно-океанических хребтов. Главная ось наибольшего растяжения практически повсеместно ориентирована перпендикулярно простиранию хребта;

2) хорошо проявленная обстановка сжатия вдоль северной и западной субдукционных границ Тихоокеанской литосферной плиты (Алеутская, Курило-Камчатская, Японская, Идзу-Бонинская, Марианская зоны субдукции), Филиппинской и Зондской зон субдукции; чуть хуже сжатие, ориентированное по направлению движения погружения океанического слэба, выражено в пределах Центрально-Американской и Андской субдукционных зон;

3) преобладание сжимающих напряжений в областях древней (20-150 млн. лет) океанической литосферы (в том числе в пределах пассивных окраин континентов) вследствие противонаправленного действия сил сползания с хребта и сил гравитационного расплывания континентов. Главная ось максимального сжатия в данном случае чаще всего направлена перпендикулярно береговой линии континентов;

4) океанические структуры, связанные с внутриплитным магматизмом – хребет Девяностого градуса и Маскаренский хребет в Индийском океане, Гавайский и Императорские хребты в Тихом океане, Азорские острова, хребты Китовый, Рио-Гранде и Св. Марии в Атлантическом океане – четко маркируются обстановкой растяжения;

5) наличие напряжений растяжения в пределах континентальных рифтовых систем – Восточно-Африканской-Красноморской, Байкальской, Момской, провинции Бассейнов и Хребтов – вследствие действия сил сползания с термального свода. Главная ось растяжения, также как и в случае океанических спрединговых зон, ориентирована по нормали к простиранию континентальной рифтовой границы литосферных плит;

6) обстановка растяжения в крупных континентальных орогенах – Центральных Андах, Тибете, Кавказе, Альпах – как результат преобладания сил гравитационного расплывания над силами сжатия;

7) доминирующая роль сжимающих напряжений в пределах Евразийского, Северо- и Южно-Американского континентов вследствие превышения сил суммарного сжатия со стороны прилегающих океанических областей на континенты над силами гравитационно- го расплывания материков.

Рис.4.6. Расчетное распределение напряжений. Модель 1: учитывающая изостатическую поправку в океанах и с «неразрезанными» границами плит. Синими линиями показаны главные оси сжатия, красными – растяжения

Рис.4.7. Расчетное распределение напряжений. Модель 2: учитывающая изостатическую поправку в океанах и с «разрезанными» границами плит. Синими линиями показаны главные оси сжатия, красными – растяжения

Рис.4.8. Расчетное распределение напряжений. Модель 3: не учитывающая изостатическую поправку в океанах и с «неразрезанными» границами плит. Синими линиями показаны главные оси сжатия, красными – растяжения

Рис.4.9. Расчетное распределение напряжений. Модель 4: не учитывающая изостатическую поправку в океанах и с «разрезанными» границами плит. Синими линиями показаны главные оси сжатия, красными – растяжения

Поле напряжений модели 2 (учитывающей изостатическую поправку в океанах и «разрезанной» вдоль границ литосферных плит с изменяющимися в зависимости от геотектонического типа этих границ коэффициентах взаимодействия (см. выше)) в целом имеет сходные с моделью 1 особенности. Но при этом нельзя не отметить и некоторые отличительные особенности модели, в которую в явном виде заложены границы литосферных плит:

1) практически никак не проявлены растягивающие напряжения вдоль океанических и континентальных дивергентных границ литосферных плит (срединно-океанических и континентальных рифтовых систем) вследствие нулевого коэффициента взаимодействия, заданного на этих границах;

2) концентрация напряжений сжатия:

а) в коллизионной зоне Папуа-Новая Гвинея, придающая картине распределения напряжений в восточной части Индо-Австралийской плиты лучше согласующиеся с фактическими данными очертания;

б) в пределах непротяженного коллизионного участка границы Тихоокеанской и Северо-Американской литосферных плит в районе полуострова Аляска, также приводящее распределение напряжений в данном регионе к некоторому «улучшению» с точки зрения соответствия наблюдаемым данным;

3) концентрация напряжений растяжения в юго-восточной части Африки, на Чукотке и в области Восточно-Тихоокеанского поднятия, которые не вполне хорошо согласуются с фактическими данными. Эти концентрации приурочены к небольшим участкам границ литосферных плит, которые согласно модели П.Берда (Bird, 2003) полагаются коллизионными, при том, что сами области взаимодействия плит, на которых эти непротяженные участки коллизии встречаются, являются дивергентными.

Таким образом, полученные результаты показывают, что введение «разрезов» на границах литосферных плит с одной стороны способствуют формированию концентрации сжимающих напряжений в тех районах, где такая концентрация действительно имеет место и тем самым приводит к улучшению модели с позиции ее соответствия реальному полю напряжений. Но с другой стороны такой подход приводит к практически полному отсутствию растягивающих напряжений вдоль дивергентных океанических и континентальных структур, а также к формированию не вполне обоснованных концентраций растяжения на их участках, полагающихся локально коллизионными.

Очевидно, что возможности модели с «разрезанными» границами не исчерпаны, и в дальнейшем для того, чтобы ее улучшить, необходимо пересмотреть значения коэффициентов взаимодействия (например, не полагать взаимодействия между плитами на рифто-
вых границах близкими к нулевым), а также уйти от формального использования деления участков границ, принятых в модели П.Берда (Bird, 2003). Однако в настоящем виде эта модель несколько уступает более простой и однозначной модели, предполагающей сплошность моделируемой среды, т.е. модели 1.

Модели 3 и 4, как говорилось выше, отличаются от первых двух тем, что в них распределение температур в океанической литосфере рассчитывалось без учета изостатической поправки, а просто из модели остывающего полупространства исходя из возраста литосферы. Модель 3, которая, как и модель 1, рассчитана на сплошной, без «разрезов», поверхности отличается от нее в следующем:

 практически на всей площади океанов (за исключением западной части Тихого океана и участков, непосредственно прилегающих к континентам в областях их активных и пассивных окраин) доминирует обстановка растяжения;

2) на всех континентах (за исключением покрытых льдом Гренландии и Антарктиды) явно преобладают сжимающие напряжения, что в модели 1 проявлено менее интенсивно:

а) восток Евразии (Камчатка, Чукотка, Сихотэ-Алинь), Индостан и Анатолия согласно модели 1 находятся в состоянии растяжения, в то время как модель 3 предполагает в этих областях обстановку сжатия;

б) Австралия, подверженная интенсивному сжатию согласно модели 3, в модели 1 представляет собой область чередования малоамплитудных напряжений сжатия и растяжения;

3) континентальные рифтовые и орогенные структуры выражены в виде областей растяжения, но не так ярко, как в модели 1;

4) структуры внутриплитного океанического магматизма не находят никакого отражения в расчетном поле напряжений.

Модель 4, рассчитанная, как и модель 2, с учетом «разрезов» литосферы, имеет в основном те же отличия от модели 3, что и модель 2 от модели 1:

1) наличие зон локализации напряжений сжатия и растяжения в областях, прилегающих к коллизионным участкам границ плит. При этом в южной части Африканского континента в рамках модели 4 происходит концентрация сжатия, а не растяжения, как в модели 2;

2) отсутствие ярко выраженного растяжения вдоль дивергентных границ плит.

Отметим также, что обстановка растяжения, свойственная, в целом, для океанической литосферы в модели 3, в модели 4 переходит в почти повсеместное сжатие.

Рис.4.10. Степень совпадения расчетного распределения напряжений (модель 1) и результатов усреднения данных «Мировой Карты Напряжений» (переменный радиус усреднения; максимальная допустимая дисперсия – 0,15; минимальное количество событий 5)

Таким образом, сопоставление приведенных четырех моделей между собой показывает, что у каждой из них есть свои плюсы и минусы. Однако все же наилучшей из предложенных здесь моделей стоит признать первую (модель 1), т.к. именно в ней наиболее точно отражаются современные тектонические структуры литосферы Земли – срединноокеанические хребты, зоны субдукции, внутриокеанические поднятия, континентальные рифтовые системы, орогены.

На рис.4.10 показана степень совпадения результатов расчетов в рамках модели 1 и данных усреднения «Мировой Карты Напряжений», приведенных на рис.4.5. Иллюстрируемая на этом рисунке величина представляет собой пересчитанное на проценты среднее значение квадратов разницы между независимыми горизонтальными компонентами расчетного и «фактического» тензора (см. 4.1).

Важно отметить, что совпадение расчетных и фактических данных в большинстве «заполненных» в результате усреднения «Мировой Карты Напряжений» ячеек не ниже 60%. Достаточно хорошая корреляция (>80%) имеет место в пределах срединноокеанских хребтов в океанах и в большей части континентальных областей. Не достаточно хорошее соответствие (50-70%), характерное для большей части внутриокеанических областей (в южной части Тихого океана эти значения понижаются до <30%), можно объяснить тем, что растягивающие напряжения, фиксирующиеся по данным замеров вдоль срединно-океанских хребтов, в процессе статистической обработки экстраполируются на значительное расстояние от них, в то время как по результатам моделирования растяжение вдоль дивергентных океанических границ быстро сменяется внутриплитным сжатием.

Рис.4.11. Распределение напряжений по данным модели П.Берда (Bird, 1998)

Рис.4.12. Распределение напряжений по данным модели К.Литгов-Бертеллони и Дж.Гуина (Lithgow-Bertelloni, Guynn, 2004)

Следовательно, несоответствие расчетных и фактических данных, выявляемое для некоторых областей в результате выполненной количественной оценки, для большинства таких районов, скорее всего, связано просто с несовершенством алгоритма экстраполяции, который применяется в настоящей работе. Поэтому можно говорить о том, что в целом данное количественное сопоставление показывает высокую степень соответствия результатов моделирования существующему в литосфере распределению напряжений.

Сравнение с опубликованными глобальными моделями П. Берда (Bird, 1998; Bird, Liu, 1999) и К.Литгов-Бертеллони и Дж.Гуина (Lithgow-Bertelloni, Guynn, 2004) демонстрирует определенные преимущества предлагаемых в данной работе моделей.

В модели К.Литгов-Бертеллони, Дж.Гуина (рис.4.12):

1) отсутствуют явно выраженные растягивающие напряжения, направленные перпендикулярно хребту вдоль Австрало-Антарктического, Африкано-Индийского и Южно-Тихоокеанского хребтов;

2) отсутствуют какие-либо признаки гравитационного растекания орогенов (Тибет, Анды, Кавказ), а также растяжение в областях современных континентальных рифтов (Восточно-Африканская, Красноморская, Байкальская рифтовые системы, провинция Бассейнов и Хребтов);

3) имеются значимые растягивающие напряжения в пределах Восточно-Европейской платформы, что не подтверждается фактическими данными.

Особенности модели П.Берда (рис.4.11) в сравнении с приведенными моделями состоят в том, что

1) не проявлено растяжение в области Байкальской рифтовой системы, а растяжения вдоль Восточно-Африканско-Красноморского рифтов не дают столь четко выраженных перпендикулярных их простиранию ориентировок;

2) несмотря на наличие растяжения в пределах центральной части Тибета, окаймляющие его сжимающие напряжения проявлены гораздо хуже;

 обстановка растяжения, показанная для востока Южной Америки не соответствует фактическим данным;

4) в целом менее четко проявлены растяжения вдоль срединных хребтов.

В целом, модель П.Берда соответствует фактическим данным гораздо лучше более поздней модели К.Литгов-Бертеллони, Дж.Гуина, а в некоторых регионах (например, запад Северной и Южной Америк) она более точно описывает существующее поле напряжений, чем моделях, представленных в настоящей работе.

Как П.Берд, так и К.Литгов-Бертеллони и Дж.Гуин отмечали невозможность объяснить существующее поле напряжений без привлечения мантийных сил (Bird, 1998; Lithgow-Bertelloni, Guynn, 2004). В качестве доказательства приводилось поле напряжений, рассчитанное с учетом только топографических сил, и показывалось его неудовлетворительное соответствие фактическим данным. Однако произведенные в рамках настоящей работы расчеты показывают, что распределение напряжений, по крайней мере не уступающее (а в чем то и значительно превосходящее) по качеству предлагаемому в этих моделях, может быть получено при использовании только сил разности гравитационного потенциала. Необходимость введения дополнительных (и при этом трудно и неоднозначно оцениваемых количественно) эндогенных сил в работах (Bird, 1998; Bird, Liu, 1999) и (Lithgow-Bertelloni, Guynn, 2004) была, вероятно, обусловлена недостаточно точными расчетами топографических сил (т.е. в расчетах не учитывались все доступные и необходимые данные).

4.3. Сопоставление результатов расчетов с фактическими данными

Для того чтобы более подробно проиллюстрировать особенности полученного в модели 1 (модель, рассчитанная на «неразрезанной» поверхности при учете изостатической поправки в океанической литосфере) распределения напряжений и сравнить полученные результаты с фактическим данными, ниже приведены рисунки (рис.4.13-4.30), на которых для некоторых регионов Земли – Африка, Южная Атлантика, Австралия, Индо-Гималайский регион, Северная Америка, северо-западная окраина Тихого океана, Южная Америка, Черноморско-Кавказско-Каспийский регион, Европа – в более крупном по сравнению с уже приведенными глобальными картами масштабе показаны результаты расчетов в рамках этой модели, на которые наложены данные замеров «Мировой Карты Напряжений» и результаты ее усреднения по методике, описанной выше.

Данные районы выбраны как наиболее показательные с геотектонической и геодинамической точек зрения. Детальный показ рассчитанного поля напряжений в этих областях необходим для того, чтобы продемонстрировать возможности представленной модели с позиций отражения в ней основных тектонических структур и геодинамических обстановок, которые имеют место в настоящее время в литосфере Земли. Сравнение с данными замеров существующего поля напряжений выступает в данном случае в роли формального критерия, оценивающего качество расчетной модели.

Цвета отображения главных осей расчетных, наблюдаемых и полученных в результате усреднения наблюдаемых напряжений на рис.4.13-4.30 остаются теми же самыми, что были приняты на рисунках, отображающих глобальные распределения соответствующих тензоров (рис.4.6-4.9, рис.4.4, рис.4.5).

Рис.4.13. Африка: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Главной особенностью расчетного распределения напряжений для Африканского континента является наличие четко выраженных интенсивных напряжений растяжения, протягивающихся вдоль всей Восточно-Африканской-Красноморской рифтовой системы. При этом главные оси максимальных растягивающих напряжений имеют ориентировку, близкую к перпендикулярной простиранию рифтовой границы, – субширотную в области Восточно-Африканских рифтов и СВ-ЮЗ в Красном море. Данные замеров показывают большое число сбросовых фокальных механизмов с соответствующей ориентировкой главных осей растяжения в центральной части Восточно-Африканской рифтовой системы и в области перехода Восточно-Африканского рифта в Красноморский (рис.4.13).

Рис.4.14. Африка: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Данные усреднения «Мировой Карты Напряжений» (рис.4.14) демонстрируют очень хорошее соответствие с расчетными данными касательно растяжения, связанного с рифтовыми литосферными границами. В самой южной части континента по данным этого усреднения развиты сдвиговые напряжения с субширотной ориентировкой сжатия, что не вполне согласуется с рассчитанной информацией. Однако данная обстановка в этом регионе была получена на основании экстраполяции всего единичных замеров, имеющих такие характеристики (рис.4.13). Сжимающие напряжения субширотной ориентировки в центральной части Африки, фиксируются по данным замеров, которые расположены в непосредственной близости к области развития сходных сжимающих напряжений по данным моделирования.

Рис.4.15. Южная Атлантика: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Расчетное поле напряжений в южной части Атлантического океана (рис.4.15) характеризуется преобладанием перпендикулярных простиранию срединно-океанического хребта растягивающих напряжений в областях, непосредственно к нему примыкающих. По мере удаления от хребта напряжения растяжения постепенно переходят в сжатие, которое в области перехода к континентам имеет значительные амплитуды и ориентировку главной оси примерно перпендикулярную береговой линии. Данная закономерность нарушается в областях внутриплитных океанических поднятий (хребтов Китовый и Рио-Гранде, уходящих соответственно к западу и востоку от срединно-океанического хребта), где в рассчитанном распределении наблюдается достаточно четкое растяжение, перпендикулярное простиранию этих структур.

Рис.4.16. Южная Атлантика: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Замеры «Мировой Карты Напряжений» в южно-атлантическом регионе довольно узкой полосой сконцентрированы вдоль срединно-океанического хребта и, как следствие, корректная экстраполяция этих данных на внутриплитную океаническую область выглядит несколько проблематичной. Поэтому факт несоответствия наличия сжимающих напряжений расчетного поля в достаточно удаленных от хребта океанических областях Африканской и Южно-Американской плит напряжениям растяжения, имеющимся в этих областях по результатам усреднения фактических данных (рис.4.16), скорее стоит связывать с недостатками алгоритма интерполяции наблюдаемой информации в областях отсутствия данных, чем с неправильностью расчетной модели. При этом сжатие у берегов Южной Америки в юго-восточной части рассматриваемого района согласуется с результатами усреднения фактических данных очень хорошо.

Рис.4.17. Австралия: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

В пределах Австралии напряжения, полученные в результате модельных расчетов, представляют собой чередование сжатия и растяжения при амплитудах в несколько раз меньших, чем амплитуды сжимающих напряжений, развитых в пределах океанических областей, прилегающих к континенту, и направленных перпендикулярно его береговой линии (рис.4.17). Таким образом, можно сделать вывод о том, что в данном случае напряжения, порожденные локальными неоднородностями внутри континентальной области, сильно меньше напряжений, вызванных противонаправленным действием сил отталкивания от хребтов, окружающих Австралию, и сил гравитационного растекания самого материка.

Если говорить о распределении напряжений непосредственно внутри Австралии, то можно отметить растяжение в западной части континента (от субмеридионального до СЗ-ЮВ простирания) и преимущественно субширотное сжатие в восточной.

Рис.4.18. Австралия: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Фактические данные по распределению напряжений в Австралии (и результаты их усреднения) указывают на субширотное сжатие в западной части (что в какой-то мере согласуется с полученным в модели субмеридиональным растяжением) и сжимающие напряжения СВ-ЮЗ ориентировки на востоке континента (рис.4.18).

В целом, необходимо констатировать недостаточно хорошее соответствие расчетных данных фактическим для этого региона. Скорее всего, это связано с неучетом локализации напряжений сжатия в области зон коллизии в Гималаях и Папуа-Новая Гвинея в рамках представленной на рис.4.17 и рис.4.18 модели. В качестве подтверждения можно привести модели 2 и 4 (рис.4.7 и рис.4.9 соответственно), где за счет «разрезания» границ такая локализация была получена и, как следствие, модельное поле напряжений на Австралийском континенте стало более хорошо согласующимся с фактическим материалом, чем в моделях без «разрезания».

Рис.4.19. Индо-Гималайский регион: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Главной чертой рассчитанного поля напряжений для Индо-Гималайского региона (рис.4.19) является наличие ярко выраженных растягивающих напряжений в пределах Тибетского плато, сменяющимся сжатием по его периферии. Растяжение в пределах этого горного сооружения является наилучшим примером внутренней гравитационной неустойчивости орогенов, приводящей, в конечном счете, к их «коллапсу» в случае, если внешние сжимающие силы прекращают этот ороген поддерживать.

Рис.4.20. Индо-Гималайский регион: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Растяжение в центральной части Тибетского плато и сжатие по его обрамлению, равно как и ЗСЗ-ВЮВ растяжение (или ССВ-ЮЮЗ сжатие) в пределах полуострова Индостан, находят свое отражение не только в результатах расчета, но и в итогах статистической обработки фактических данных (рис.4.20). Главной проблемой в данном случае является несоответствие между субмеридиональными ориентировками максимального растяжения в Тибете по расчетным данным и субширотным простиранием главных осей растяжения для сбросовых механизмов землетрясений, фиксирующихся в этом районе.

Рис.4.21. Северная Америка: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Сжимающие напряжения, развитые в Центрально-Американской зоне субдукции, имеют ориентировку, перпендикулярную ее простиранию. Об этом свидетельствует большое количество соответствующих фокальных механизмов в этой области (рис.4.21). В поле напряжений модельных расчетов это сжатие проявлено не столь ярко. Это может быть связано с тем, что это сжатие, как и в случае северной и южной части Андской зоны субдукции (см. ниже), как бы «перебивается» в модели сильным растяжением, связанным с гравитационным растеканием крупного орогена Кордильерских гор.

Преобладание субмеридионального растяжения на п-ове Аляска, не вполне согласующееся с фактическим материалом, связано с невозможностью в рамках модели с «неразрезанными» границами получить локализацию напряжений сжатия, которая здесь имеет место и которая была успешно воспроизведена в моделях 2 (рис.4.7) и 4 (рис.4.9).

Преобладание сдвигового режима в пределах зоны Калифорнийского залива и растягивающего в провинции Бассейнов и Хребтов находит свое четкое отражение в рассчитанном поле напряжений (рис.4.21). При этом важно отметить, что для области Калифорнийского залива характерно совпадение ориентировок главных осей сжатия сдвиговых механизмов по фактическим данным (близкое к субмеридиональному) с направлением оси минимального растяжения по данным расчетным (рис.4.22). Для провинции Бассейнов и Хребтов главные оси растяжения расчетного поля ориентированы так же субширотно, как и главные оси растяжения сбросовых механизмов зафиксированных там землетрясений.

В пределах равнинной части континента, а также Мексиканского и Гудзонова заливов и Карибского моря доминирует обстановка сжатия. В пределах п-ова Лабрадор и Лаврентийской возвышенности сжатие сменяется растяжением. Эти особенности расчетного поля напряжений в той или иной степени находят подтверждение в фактических данных.

Рис.4.23. Северо-западная окраина Тихого океана: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Рис.4.24. Северо-западная окраина Тихого океана: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

На северо-западной окраине Тихого океана (рис.4.23, рис.4.24) по данным моделирования фиксируется интенсивное сжатие в пределах Тихоокеанской плиты вдоль ее субдукционных границ, причем главные оси сжатия ориентированы перпендикулярно этим границам. Такой характер напряжений на границе океанической и континентальной литосферных плит находит свое подтверждение в наличии большого числа взбросовых механизмов очагов землетрясений с соответствующим простиранием их главной оси сжатия в этих областях. Присутствие растягивающей составляющей в расчетном поле напряжений для задуговых бассейнов Японского и Охотского морей прямого подтверждения в виде соответствующих замеров в базе данных «Мировой Карты Напряжений» не находит. Однако это растяжение согласуются с представлениями о рассеянном спрединге в этих бассейнах. Полученное в модели растяжение в восточной части Филиппинской плиты (к западу от Идзу-Бонинской и Марианской зон субдукции) субширотной и ВСВ-ЗЮЗ ориентировки хорошо согласуются как с отдельными замерами, указывающими на наличие в данном регионе соответствующих фокальных механизмов сбросового типа (рис.4.23), так и с результатами усреднения фактических данных для этого района (рис.4.24).

Расчетное поле напряжений в пределах юго-восточной окраины Тихого океана и Южно-Американского континента имеет следующие особенности. Субширотное сжатие, связанное с процессом взаимодействия субдуцирующей Тихоокеанской плиты под континент, на довольно узком по долготе участке сменяется не менее интенсивным растяжением примерно той же ориентировки, вызванным гравитационным растеканием крупного горного сооружения Анд. Причем на северном и южном участках Андской зоны субдукции это растяжение столь интенсивно, что практически полностью «перекрывает» и делает незаметным субдукционное сжатие. Важно отметить, что, по сути, такая же картина фиксируется по данным очагов землетрясений из «Мировой Карты Напряжений»: доминирующая роль взбросовых фокальных механизмов в центральной части Андской субдукционной зоны сменяется преобладанием сбросовых механизмов в ее северной и южной частях. При этом в центральной части этой зоны субдукции при продвижении на восток сжатие быстро сменяется растяжением, что так же отражается в появлении сбросовых механизмов землетрясений на территории северных Чили и Аргентины и западной Боливии (рис.4.25). В пределах равнинной части материка в целом доминирует обстановка сжатия субширотной (до СВ-ЮЗ на севере) ориентировки главных осей, что хорошо согласуется с данными интерполяции фактического материала (рис.4.26). Растягивающие напряжения, полученные в пределах северо-восточной части Бразильского нагорья, а также Гвианского плоскогорья, не могут быть ни подтверждены, ни опровергнуты ввиду отсутствия в «Мировой Карте Напряжений» замеров для этих областей.

Рис.4.25. Южная Америка: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Рис.4.26. Южная Америка: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Рис.4.27. Черноморско-Кавказско-Каспийский регион: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Рис.4.28. Черноморско-Кавказско-Каспийский регион: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Рис.4.29. Европа: расчетное распределение напряжений (тонкие линии) в сравнении с данными замеров «Мировой Карты Напряжений» (толстые линии)

Распределение напряжений для двух последних рассматриваемых регионов – Черноморско-Кавказско-Каспийского (рис.4.27, рис.4.28) и Европейского (рис.4.29, рис.4.30) более подробно будет рассмотрено в главе, посвященной региональному моделированию, которые было выполнено на примере именно этих регионов.

В расчетном поле напряжений Черноморско-Кавказско-Каспийского региона (рис.4.27, рис.4.28) можно видеть доминирование обстановки сжатия в пределах остаточных бассейнов Черного и Каспийского морей, а также растягивающие напряжения в западной части горного сооружения Большого Кавказа.

Рис.4.30. Европа: расчетное распределение напряжений (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии)

Поле напряжений Европейского региона (рис.4.29, рис.4.30) характеризуется своей высокой степенью неоднородности, что выражено в быстрой пространственной изменчивости как режимов, так и ориентировок главных осей напряжений. Однако даже на фоне этого нерегулярного распределения можно видеть преобладание регионального сжатия в пределах Средиземноморского бассейна и Восточно-Европейской платформы и растяжения в области развития европейских альпийско-герцинских складчатых образований.

И все же для того, чтобы вести более предметные разговоры об особенностях поля напряжений в Европейском и Черноморско-Кавказско-Каспийском регионах необходимо произвести вычисления с большей степенью детальности, что и было сделано в рамках работ по региональному моделированию (см гл.5).

На основании вышесказанного можно сделать вывод о том, что предлагаемые в настоящей работе результаты расчетов поля напряжений в литосфере Земли характеризуются тем, что вы них достаточно хорошо выражены все главные тектонические элементы земной литосферы – субдукционные зоны, океанические и континентальные хребты, области внутриплитного океанического магматизма, зоны континентальной коллизии.

Степень соответствия результатов моделирования фактическим данным (и результатам усреднения фактических данных) в целом можно характеризовать как очень хорошую, но она различная для разных регионов. При этом большое расхождение между данными расчетов и замеров в пределах какого-либо отдельного района может быть связано не только с недостаточной корректностью модельных построений, но и с малым количеством точных определений напряженного состояния в рассматриваемой области или невозможностью применения используемых алгоритмов статистической обработки для этих данных.

Наилучшей из предложенных в рамках настоящей работы моделей глобального поля напряжений (модели 1-4) считается модель 1, предполагающая сплошность сферической оболочки, на которой производились расчеты. Однако стоит обратить внимание на то, что прочие модели (модели 2-4) в некоторых аспектах не только не уступают модели 1, но и превосходят ее. Особенно это касается моделей с «разрезанными» границами литосферных плит (модели 2 и 4). Поэтому доработка этих моделей в плане установки более корректных значений коэффициентов взаимодействия на литосферных границах способна привести к получению в результате расчетов распределения, которое еще более хорошо согласуется с современными представлениями о напряженном состоянии литосферы, чем те, которые уже получены в рамках данной работы.

По результатам выполненного моделирования можно заключить, что правильным образом и с достаточной степенью детальности рассчитанные обобщенные топографические силы (силы отталкивания от хребта в океанах, силы гравитационного растекания орогенов на континентах) способны сформировать поле напряжений, в главном соответствующее наблюдаемому и способное объяснить тектонические структуры первого порядка. Привлечение иных источников (таких как силы мантийных течений и силы затягивания в зонах субдукции) при этом не требуется.

Глава 5. Результаты регионального моделирования

Предложенный в настоящей работе подход к математическому моделированию напряженного состояния в литосфере Земли, при котором в качестве главного источника напряжений полагались силы разности гравитационного потенциала, был успешно применен для построения глобальных моделей поля напряжений (см. гл.4).

В данной главе приводятся результаты аналогичных расчетов для Черноморско-Кавказско-Каспийского региона и Европы, демонстрирующие возможности регионального моделирования по разработанной методике. Необходимость в региональном моделировании обусловлена тем, что региональные модели распределения напряжений по сравнению с моделями глобальными обладают большей детальностью, что позволяет зафиксировать особенности моделируемых полей, не заметные при более грубом разрешении.

Моделирование поля напряжений в Черноморско-Кавказско-Каспийском регионе производилось главным образом с целью последующего определения упругого изгиба литосферы под воздействием полученных в модели напряжений. Разрешение выполненных расчетов для этой области $(0,2^{\circ}\times0,2^{\circ})$ позволяет получить литосферные складки с характерной для них длины волны в сотни км (см. 3.6). Вычисление распределения амплитуд литосферных складок для данного региона необходимо для проверки предложенной в опубликованных ранее работах (Nikishin et al., 2003; Brunet et al., 2003) гипотезы, объясняющей значительное увеличение скорости погружения в пределах Черноморского и Каспийского бассейнов в плиоцен-четвертичное время с помощью модели упругого изгиба литосферы под воздействием региональных тектонических напряжений.

Детальный учет как можно большего количества данных и высокое разрешение расчетов крайне необходимы при геодинамическом моделировании в пределах таких сложных и неоднородных с точки зрения строения среды регионов, каким является Европа. В настоящей работе для этого района произведено сравнение результатов расчетов полей напряжений, рассчитанных в рамках двух разных моделей: в одной модели в качестве входных данных по структуре земной коры использовалась та же модель, что и при глобальных расчетах (Mooney et al., 1998; Bassin et al., 2000), а в другой – локальная для рассматриваемого региона модель структуры коры (Tesauro et al., 2008).

5.1. Черноморско-Кавказско-Каспийский регион

В данном разделе представлены результаты моделирования напряженного состояния и складкообразования в литосфере в пределах Черноморско-Кавказско-Каспийского региона.

Одной из проблем в понимании истории развития Черноморской и Каспийской впадин является выяснение причин значительного увеличения скорости погружения этих бассейнов в плиоцен-четвертичное время. Оно было выявлено в результате численного моделирования истории погружения этих бассейнов в работах (Nikishin et al., 2003; Brunet et al., 2003), где использовалась стандартная процедура бэкстриппинга (Steckler, Watts, 1978) с поправкой на уплотнение осадков и информацию о глубине палеобассейнов (Ершов, 1997; Ershov et al., 1998; Kopotaeв, 1998; Ershov et al., 1999; Ershov et al., 2003). Аналогичные результаты получены при моделировании погружения Черного моря в работах (Robinson et al, 1997; Spadini et al., 1998). Правильная интерпретация источников этого быстрого погружения особенно важна в свете того, что именно с ним обычно связана нефтегазоносность осадочных бассейнов.

В работах (Nikishin et al., 2003; Brunet et al., 2003; Korotaev et al., 1999) для объяснения быстрого плиоцен-четвертичного погружения Черноморской и Каспийской впадин была предложена модель прогибания литосферы под воздействием сжимающих напряжений, которые, как известно (Милановский, 1991; Милановский, 1996), доминируют в данном регионе начиная с олигоцена вследствие коллизии Аравийской и Евразийской плит. Данная модель была подтверждена численными расчетами, которые показали возможность подбора таких сжимающих сил на границах моделируемого разреза, что вызванное этими силами прогибание упругой пластины, тождественной по свойствам реальной литосфере, будет сопоставимо с наблюдаемыми данными. Альтернативным объяснением быстрого погружения в осадочных бассейнах является точка зрения, согласно которой его главной причиной является уплотнение пород основного состава в нижней части коры вследствие перехода базальта (габбро) в гранатовые гранулиты и эклогит (Артюшков, 1993; Артюшков, 2005; Артюшков, Егоркин, 2005; Артюшков, 2007; Артюшков, 2010).

Произведенное компьютерное моделирование упругого изгиба реологически неоднородной литосферы под действием внутриплитных напряжений дало возможность получить количественную оценку величины этого изгиба под действием не произвольно подобранных сил, как это было сделано в работах (Nikishin et al., 2003; Brunet et al., 2003), а напряжений, возникающих в результате действия тектонических сил, имеющих реальную физическую природу (сил разности гравитационного потенциала литосферы). Полученное

в результате этих расчетов распределение изгиба литосферы позволяет оценить обоснованность модели быстрого погружения осадочных бассейнов под воздействием тектонических напряжений.

В настоящей работе представлены три модели распределения напряжений в пределах рассматриваемого региона. Общие черты и различия в постановке начальных и граничных условий, а также области расчетов для этих моделей состоят в следующем. Для всех моделей использовались стандартные для разработанной методики расчета напряжений начальные условия: нулевые смещения, скорости смещений и напряжения. «Фиксированная» северная граница области расчетов выступала в качестве условия граничного. Под «фиксированной» границей в данном случае понимаются нулевые смещения и скорости смещений во всех узлах сетки, принадлежащих этой границе, на всех шагах расчета. Южная, западная и восточная границы при этих вычислениях полагались «свободными», т.е. при расчете баланса сил в принадлежащих этим границам узлах, напряжения, действующие извне расчетной области, принимались нулевыми. Расчетная область первой модели (модель 1) была выбрана следующим образом: ее южная граница соответствовала южному обрамлению Аравийской плиты в центральной части и северной границе Африканской и Индийской плит на западе и востоке соответственно; западная и восточная – долготам 18° в.д. и 72° в.д.; северная – широте 52° с.ш. Разрешение выполненных расчетов составляло 0,2°×0,2°. Границы литосферных плит (как в и случае построения глобальных моделей) брались по данным цифровой модели П. Берда (Bird, 2003). Включение в область расчетов всей Аравийской плиты необходимо для того, чтобы учесть силы сползания с термального свода Красноморской рифтовой системы при определении распределения напряжений в Черноморско-Каспийском регионе. Вторая модель (модель 2) отличалась только тем, что в ней из области рассмотрения была исключена Аравийская плита, т.е. южная граница расчетной области проводилась в центральной части по южной границе не Аравийской, а Евразийской плиты. Третья модель (модель 3) характеризуется наличием граничного условия на смещения вдоль участка от 36,4° до 43,6° в.д. южной границы Евразийской плиты – здесь в каждом узле было установлен вектор смещения длиной 4000 м (~1/1000 от общего расстояния расчетной области по широте) и азимутом 330° СЗ, что примерно соответствует направлению скоростей смещения Аравийской плиты по данным GPS (Reilinger et al., 2006). Область расчетов для второй (модель 2) и третьей (модель 3) моделей совпадают.

Во всех трех вариантах расчета источниками модельного поля напряжений были приложенные в каждом узле области силы разности гравитационного потенциала (обобщенные топографические силы), рассчитанные по приведенной выше методике (см. 3.5).

Рис.5.1. Расчетная термальная мощность рассматриваемого региона

На рис.5.1 приведены результаты расчетов термальной мощности литосферы, выполненные по методике и с использованием входных данных, о которых говорилось выше (см. 3.2). Расчет мощности литосферы с одной стороны необходим для оценки величин обобщенных топографических сил, а с другой имеет самостоятельную ценность применительно к пониманию геодинамики Черноморско-Кавказско-Каспийском региона. Так, например, можно отметить, что наибольшую мощность (200-300 км) литосфера имеет в Черноморском и Каспийском бассейнах, а также в восточной части зоны Предкавказских краевых прогибов, а наименьшую (0-50 км) – в пределах горных областей (например, горного сооружения Большого Кавказа). Столь значительный контраст (до 300 км) мощности литосферы в смежных областях приводит к значительному изгибу в пространстве ее эффективной средней линии (Ershov, 1999; Ершов, 2002), что при наличии сколь-нибудь значимых внутриплитных напряжений может привести к дополнительному изгибу литосферы под действием этих напряжений и, таким образом, вызвать образование литосферных складок.

Рис.5.2. Расчетное распределение напряжений при включении в расчеты всей рассматриваемой области (модель1)

Рис.5.3. Черное море: расчетное распределение напряжений модели 1 (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии) Использовавшийся радиус усреднения – 500 км

На рис.5.2 представлены результаты расчетов поля напряжений в рамках модели 1, а на рис.5.5 – модели 2. Видно, что полученные распределения напряжений в целом схожи (что определяется большой степенью общности источников напряжений, начальных и граничных условий), но имеются и некоторые различия.

Общие для первой и второй моделей черты распределения расчетных напряжений следующие. В Черном и Каспийском морях доминирует обстановка сжатия. В Черном море субмеридиональное сжатие в его восточной части сменяется сжатием СЗ-ЮВ простирания в центральной и западной частях, которое переходит в субмеридиональное растяжение в северо-западной части. Для Каспийского моря характерна достаточно выдержанная ЮЗ-СВ ориентировка главных осей сжатия в Центральном Каспии, сменяющаяся на почти строго меридиональную на севере. Обстановка растяжения приурочена главным образом к области развития орогенов: практически весь хребет Большого Кавказа находится в состоянии СВ-ЮЗ растяжения, причем в восточной части это растяжение сменяется интенсивным сжатием примерно того же простирания по периферии горного сооружения. Также стоит отметить региональное растяжение в пределах Эгейского моря, которое подтверждается фактическими данными и получено в настоящей работе в результате действия только сил разности гравитационного потенциала без привлечения каких-либо дополнительных источников, связанных с процессами, вызванными субдукцией.

^{48'} 50' 52' 54' Рис.5.4. Каспийское море: расчетное распределение напряжений модели 1 (тонкие линии) в сравнении с данными усреднения «Мировой Карты Напряжений» (толстые линии) Использовавшийся радиус усреднения – 200 км

Рис.5.5. Расчетное распределение напряжений при исключении из области расчетов Аравийской плиты (модель 2)

На рис.5.3 и рис.5.4 приведено сопоставление результатов расчета модели 1 с данными усреднения «Мировой Карты Напряжений» для Черного и Каспийского морей соответственно. Цвета отображения главных осей сжатия и растяжения для расчетных и усредненных фактических данных на этих рисунках те же, что использовались при обсуждении результатов глобальных моделей (см. гл.2). Можно отметить практические точное совпадение результатов расчета с наблюдаемыми данными в пределах всего Черного моря. Для Каспийского моря с модельными напряжениями не согласуются только субмеридиональные растягивающие напряжения в центральной части этого бассейна.

Отличия в результатах моделей 1 и 2 проявлены только в пределах Южного Каспия (рис.5.6а, рис.5.6б), где для полей напряжений, полученных в рамках разных моделей, имеют место различные ориентировки главных осей сжатия. В остальных частях расчетной области результаты расчетов первой и второй моделей демонстрируют схожий характер распределения напряжений.

Распределение напряжений модели 2 (не учитывающей влияния Аравийской плиты), характеризуется субширотной ориентировкой осей сжатия в южной части Каспийского моря и 3С3-ВЮВ вдоль южного берега Каспийского моря (рис.5.6б). Включение в расчеты Аравийской плиты (модель 1) приводит к изменению этих ориентировок на СВ-ЮЗ или ВСВ-ЗЮЗ в южной части Каспийского моря и на субширотные вдоль его южного берега (рис.5.6а).

Рис.5.6а. Модель 1: распределение напряжений в Южном Каспии

Рис. 5.6б. Модель 2: распределение напряжений в Южном Каспии Фиолетовые линии – проекции на горизонтальную плоскость осей сжатия взбросовых и сдвиговых режимов деформации по данным «Мировой Карты Напряжений» (Heidbach et al., 2008)

Сравнение полученных результатов с наблюдаемыми в Южном Каспии напряжениями (решения фокальных механизмов по данным «Мировой Карты Напряжений» (Heidbach et al., 2008)) показывает, что поле напряжений модели 1 гораздо лучше согласуется с фактическими данными по сравнению с распределением напряжений из модели 2. Несколько замеров базы данных «Мировой Карты Напряжений» отчетливо показывают наличие CB-ЮЗ ориентировок главных осей сжатия в южной части Каспийского моря, что находит свое отражение в первой модели, но не проявлено во второй. На рис.5.6а и рис.5.6б фиолетовыми линиями показаны ориентировки проекций на горизонтальную плоскость главных осей сжатия для взбросовых и сдвиговых режимов деформаций. Важно отметить, что в «Мировой Карте Напряжений» (Heidbach et al., 2008) в пределах показанной на этих рисунках области не имеется замеров, характеризующимися иными режимами деформаций (напр., сбросы или сбросо-сдвиги). Данный факт подтверждает наличие полученной в обеих рассчитанных моделях (модель 1 и модель 2) обстановки сжатия в Южном Каспии.

Как говорилось выше, распределения напряжений в моделях 1 и 2 были сформированы одними и теми же источниками – обобщенными топографическими силами (силы разности гравитационного потенциала). Разница заключалась только в том, что в первом случае суммарное действие сил разности гравитационного потенциала от Аравийской плиты на Черноморско-Кавказско-Каспийский регион учитывалось, а во втором - нет. Полученные в этих моделях различные распределения напряжений для южной части Каспийского моря говорят о том, что сами по себе локальные силы разности гравитационного потенциала литосферы в этом районе должны приводить к формированию обстановки субширотного сжатия (что и показывает модель 2); однако, за счет того, что вследствие раскрытия Красного моря Аравийская плита совершает вращательное движение против часовой стрелки, в области Южного Каспия она оказывает сжимающее воздействие практически субмеридионального направления (см. направления движения Аравии относительно Евразии по данным GPS (Reilinger et al., 2006) на рис.5.7). Таким образом, субширотное сжатие, вызванное локальными топографическими силами, накладываясь на субмеридиональное движение Аравийской плиты, переходит в сжатие СВ-ЮЗ простирания, которое отчетливо фиксируется в данном регионе по данным «Мировой Карты Напряжений» (Heidbach et al., 2008). Напомним, что при расчетах как первой, так и второй моделей никаких источников типа сил мантийных течений, которые по некоторым представлениям вовлекают в движение Аравийскую плиту, формируя наблюдаемое распределение скоростей движения земной коры, не учитывалось.

Рис.5.7. Карта, показывающая скорости движения относительно Евразии по данным GPS. Рисунок взят из работы (Reilinger et al., 2006)

Таким образом, выполненные численные эксперименты показали, что вращательное движение Аравийского полуострова относительно Евразийского континента, четко фиксируемое по данным GPS (Reilinger et al., 2006) и влияющее на распределение напряжений в приграничных с Аравийской плитой частях Евразии (в частности, как показано в настоящей работе, в Южном Каспии), может быть объяснено в рамках модели соскальзывания Аравии с термального свода Красноморской рифтовой системы, без привлечения каких-либо мантийных источников этого движения. Следует также отметить некоторую ограниченность любого регионального моделирования, вследствие невозможности корректно учесть воздействие прилегающих к рассматриваемому району областей.

Рис.5.8. Расчетное распределение напряжений при наличии граничного условия на смещения (модель 3)

Рис.5.9. Расчетная эффективная средняя поверхность

Рис.5.10. Расчетная амплитуда литосферных складок

Установка граничного условия на смещения вдоль участка от 36,4° до 43,6° в.д. южной границы Евразийской плиты при расчетах третьей модели (модель 3) должно было имитировать сжимающее воздействие Аравийского индентора на Черноморско-Кавказско-Каспийский регион. Как говорилась выше, длина вектора этого смещения составляла примерно 1/1000 от общего расстояния расчетной области по широте, а азимут направления вектора был принят равным 330° СЗ. Если говорить в рамках принятой в настоящей работе терминологии, то такая постановка задачи в какой-то степени равнозначна введению в модель сил мантийных течений, которые «увлекают» на соответствующем участке в северо-западном направлении Аравийскую плиту, «вдавливая» ее в Евразию.

Результаты расчетов поля напряжений для третьей модели показаны на рис.5.8, где видно интенсивное сжатие C3 простирания практически во всей западной половине расчетной области, на фоне которого все остальные особенности поля напряжений становятся незаметными. Таким образом, установка даже относительно малого внешнего воздействия в виде граничного условия на смещения приводит к тому, что все локальные источники напряжений, вызванные неоднородностями в топографии и составе и структуре земной коры, полностью «перебиваются» этим источником. Возможно, что для получения более адекватной картины распределения напряжений при введении такого дополнительного граничного условия, необходимо в несколько раз понизить амплитуду задаваемого смещения.

Результаты расчетов эффективной средней поверхности литосферы и амплитуды литосферных складок, возникающих в результате действия полученных в модели 1 напряжений, показаны на рис.5.9 и рис.5.10 соответственно.

Наибольшие значения величины прогибания литосферы (около 1,5 км) наблюдаются в Восточно-Черноморской и Южно-Каспийской впадинах, именно для которых в работах (Nikishin et al., 2003; Brunet et al., 2003) и была предложена модель синкомпрессионного прогибания под воздействием сжимающих напряжений. Таким образом, выполненные на новом уровне расчеты (2d-модель поля напряжений и литосферных складок вместо 1dмодели изгиба пластины) подтверждают эти ранее опубликованные модели.

5.2. Европейский регион

Геодинамическая позиция Европейского региона определяется тем, что в его пределах друг на друга накладываются два источника напряжений – силы отталкивания от Северо-Атлантического хребта и коллизионные силы, действующие вдоль южной границы Евразийской плиты. При этом важно учитывать, что взаимодействие этих сил происходит на фоне сложного строения разновозрастной литосферы и достаточно расчлененного рельефа территории. Именно в связи с неоднородностью среды в этом регионе при геодинамическом моделировании крайне важным фактором становится высокое разрешение расчетов и детальный учет как можно большего количества данных.

В этой главе представлены результаты численного моделирования структуры литосферы и распределения напряжений в рамках области ограниченной на западе и востоке по меридианам 25° з.д. и 35,5° в.д., на юге и севере – по параллелям 34,25° с.ш. и 71,5° с.ш. соответственно. Разрешение выполненных расчетов – 0,25°×0,25°.

Рассчитано два варианта распределения свойств литосферы, топографических сил и порожденных этими силами напряжений. В одной модели (модель 1) в качестве входных данных по структуре земной коры использовалась глобальная модель Crust2.0 (Mooney et al., 1998; Bassin et al., 2000), имеющая исходное разрешение $2^{\circ} \times 2^{\circ}$, которое было преобразовано до расчетного ($0,25^{\circ} \times 0,25^{\circ}$) в Европейском районе с помощью линейной интерполяции. Во втором случае (модель 2) была использована локальная для рассматриваемого региона модель структуры коры EuCRUST-07 (Tesauro et al., 2008) с разрешением $0,25^{\circ} \times 0,25^{\circ}$. Разрешение модели EuCRUST-07, собственно, и определило разрешение вычислений для этого района. Весь набор остальных необходимых для расчетов входных данных (рельеф, гравитационные аномалии, температура на поверхности и пр.) остался неизменным относительно использовавшегося при построении глобальных моделей.

В модели EuCRUST-07 (Tesauro et al., 2008) имеется информация о пространственном положении поверхности фундамента, границы верхней и нижней коры (в этой модели в отличие от Crust2.0 земная кора подразделяется не на три, а на две единицы), поверхности Мохоровичича, а также данные о скорости распространения сейсмических волн в верхней и нижней коре. Эти скорости *p*-волн (V_p) были пересчитаны в плотности (*r*) соответствующих слоев по формуле, следующей из уравнений, приведенных в (Rybach, Buntebarth, 1982):

$$r = \frac{2,74 \cdot V_{p} + 6}{8,15}.$$
 (5.1)

Рис.5.11. Мощность земной коры по данным модели CRUST2.0 (Mooney et al., 1998; Bassin et al., 2000)

Рис.5.12. Мощность земной коры по данным модели EuCRUST-07 (Tesauro et al., 2008)

Рис.5.13. Плотность верхней коры по данным модели CRUST2.0 (Mooney et al., 1998; Bassin et al., 2000)

Рис.5.14. Плотность средней коры по данным модели CRUST2.0 (Mooney et al., 1998; Bassin et al., 2000)

Рис.5.15. Плотность нижней коры по данным модели CRUST2.0 (Mooney et al., 1998; Bassin et al., 2000)

На рис.5.11 и рис.5.12 для сравнения приведены карты распределения суммарной мощности земной коры в Европейском регионе по данным модели CRUST2.0 (Mooney et al., 1998; Bassin et al., 2000) и EuCRUST-07 (Tesauro et al., 2008) соответственно. Напомним, что исходное разрешение модели CRUST2.0 составляло $2^{\circ} \times 2^{\circ}$, а представленные на рис.5.11 и, соответственно, использовавшиеся для расчетов данные разрешения 0,25°×0,25° были получены путем линейной интерполяции исходной информации.

В целом, можно констатировать, что в главных своих особенностях эти модели мало отличаются друг от друга. Однако стоит отметить, что согласно модели EuCRUST-07 в Карелии, а также в областях Пиренейского, Альпийского и Карпатского горных сооружений мощность коры может достигать 60 км и более, в то время как в этих же регионах модель CRUST2.0 дает значения в 40-50 км. Также обращают на себя внимание более низкие значения мощности коры в Средиземном (5-15 км) и Черном морях (15-20 км) в модели EuCRUST-07 по сравнению с моделью CRUST2.0, где для этих регионов характерны мощности в 15-30 км и 25-30 км соответственно. Еще одним заметным отличием модели EuCRUST-07 является четко выраженное утолщение коры (до 40 км) под Исландией и Фарерскими островами, которое никак не проявлено в модели CRUST2.0.

Рис.5.16. Плотность верхней коры по данным модели EuCRUST-07 (Tesauro et al., 2008)

Рис.5.17. Плотность нижней коры по данным модели EuCRUST-07 (Tesauro et al., 2008)

На рис.5.13, рис.5.14 и рис.5.15 показаны карты плотностей верхней, средней и нижней коры согласно модели CRUST2.0. Плотность верхней коры меняется в пределах от 2,6 до 2,8 г/см³, средней – от 2,8 до 2,9 г/см³, нижней – от 2,9 до 3,1 г/см³. Для континентальной части рассматриваемого региона во всех трех слоях земной коры наблюдается отчетливо выраженная разница в плотности между двумя областями, граница между которыми проходит по линии Торнквиста, – Восточно-Европейской платформой (более высокая плотность) и герцино-альпийской областью Европы (более низкая плотность). Для Восточно-Европейской платформы плотность верхней коры составляет 2,8 г/см³, средней коры – 2,9 г/см³, нижней коры – 3,05-3,1 г/см³, а для герцино-альпийской области – 2,75 г/см³, 2,8 г/см³ и 2,9 г/см³ соответственно. При этом под горными сооружениями Пиренеев и Альп плотность нижней коры увеличивается до 3,1 г/см³. Для океанической коры в данном районе характерны следующие плотности: верхняя кора – 2,6-2,7 г/см³, средняя кора – 2,9 г/см³, нижняя кора – 3,05-3,1 г/см³.

На рис.5.16 и рис.5.17 приведено распределение плотностей верхней и нижней коры, рассчитанных по формуле (5.1) из скоростей сейсмических волн модели EuCRUST-07. Как видно из этих рисунков, в пределах большей части региона плотность верхней коры меняется от 2,4 до 3,0 г/см³, нижней – от 2,75 до 3,3 г/см³. Модель EuCRUST-07 (также как и CRUST2.0) демонстрирует контраст плотностей между корой более древней Восточно-Европейской платформы и молодыми герцино-альпийскими образованиями. В целом, верхняя и нижняя кора Восточно-Европейской платформы имеют плотности 2,85-2,9 г/см³ и 3,0-3,15 г/см³ соответственно; для более молодой герцино-альпийской части рассматриваемой области свойственны величины плотности в 2,7-2,85 г/см³ для верхней коры и 2,9-3,0 г/см³ для нижней. Обращают на себя внимание низкие (3,0 г/см³) для Восточно-Европейской платформы значения плотности и ижней коры в Свеконорвежской области и районе развития каледонидов Скандинавской складчатой области, что никак не выражено в модели CRUST2.0.

На основании описанных моделей структуры коры, а также комплекса других данных (рельеф, гравитационные аномалии, температура на поверхности и пр.) были рассчитаны две модели распределения температур и плотностей в литосфере по методике описанной выше (см. 3.2). При расчетах одной модели использовались данные по структуре коры согласно модели CRUST2.0 (модель 1), а другой – модели EuCRUST-07 (модель 2). На основании полученных моделей литосферы были вычислены распределения обобщенных топографических сил в ней, которые использовались в качестве главных источников при расчетах полей напряжений (см. ниже). Результаты расчетов термальной мощности литосферы в рамках этих моделей приведены на рис.5.18 и рис.5.19.

Рис.5.19. Расчетная термальная мощность литосферы (модель 2)

Расчетная термальная мощность литосферы в пределах Восточно-Европейской платформы имеет менее контрастное распределение по сравнению с герцино-альпийской областью Европы. В модели 2 для Восточно-Европейской платформы преобладают значения мощности в 140-170 км, а в модели 1 – 170-200 км, достигая 210-220 км в Балтийском море и на территории Финляндии. При этом обе модели показывают гораздо более низкие значения для мощности литосферы под каледонидами Скандинавской складчатой области – менее 100 км.

Герцино-альпийская область Европы характеризуется весьма изменчивой расчетной мощностью литосферы – от 0 до 250-300 км. Для модели 1 свойственна относительно утоненная литосфера под горными цепями Пиренеев (30-80 км), Альп (французские и швейцарские Альпы – 20-40 км; австрийские Альпы – 90-100 км), Апеннин (30-100 км) и Карпат (70-160 км). Уменьшение мощности литосферы под Пиренеями и Альпами может быть объяснено тем, что при относительно небольшом утолщении коры (40-50 км) под этими областями наблюдается значительное увеличение плотности (до 3,1 г/см³) нижней коры (см. выше). В модели 2, наоборот, горные сооружения Пиренеев, австрийских Альп, Карпат и Северных Апеннин имеют резко утолщенную (200-300 км) литосферу, что связано с ярко выраженным увеличением мощности коры (60 км и более) в этих районах (см. рис.5.12) при отсутствии хорошо проявленных контрастов плотностей. Относительно небольшие (30-100 км) мощности литосферы в области итальянских, французских и швейцарских Альп в рамках модели 2 объясняются уплотнением нижней коры до 3,0-3,2 г/см³ в данном регионе по данным модели EuCRUST-07 (см. рис.5.17).

Согласно модели 1 в восточной части Средиземного моря термальная мощность литосферы составляет 150-200 км, достигая 300 км в Адриатическом, Ионическом и Черном морях. В модели 2 мощность литосферы в этих областях значительно меньше – в восточном средиземноморье она изменяется от 10 до 170 км, в Адриатическом и Ионическом морях не превышает 220 км, а в Черном – 250 км. Такое различие между полученными в моделях 1 и 2 мощностями литосферы под Средиземным и Черным морями может быть обусловлено упоминавшейся ранее разницей мощности земной коры в моделях ее структуры: модель CRUST2.0 дает значения для Средиземного и Черного моря в 15-30 км и 25-30 км соответственно, а EuCRUST-07 – 5-15 км и 15-20 км.

Из всего вышесказанного можно сделать вывод о том, что рассчитанные по одной методике, но на основании различных входных данных модели термальной мощности литосферы для Европейского региона в целом имеют сходный характер, но в некоторых деталях отличаются весьма значительно. Как говорилось выше, при моделировании напряженного состояния в рассматриваемом регионе, в качестве источников напряжений выступали обобщенные топографические силы (силы разности гравитационного потенциала), действующие в каждом узле расчетной сетки. Они должны позволить учесть не только влияние локальных неоднородностей в моделируемой среде, но и «отталкивающее» воздействие со стороны Северо-Атлантического хребта (сила отталкивания от хребта – частный случай сил разности гравитационного потенциала), а также «коллизионное» взаимодействие с Африканской плитой. Количественная оценка этих сил была выполнена на основании описанных выше моделей термальной литосферы (модель 1 и модель 2) по методике, приведенной в разделе 3.5.

Таким образом, было рассчитано две модели поля напряжений в Европейском регионе, причем в одном случае при оценке движущих сил и свойств среды (модуль Юнга, плотность) за основу была взята литосферная модель 1, а в другом – модель 2. Для удобства терминологии, модели распределения напряжений в дальнейшем будут называться так же, как и модели литосферы, на основании которых они были рассчитаны, – модель 1 и модель 2.

В качестве граничных условий моделей выступали «зафиксированные» (т.е. с постоянно равной нулю скоростью смещения) северная, западная и восточная границы области расчетов и «свободная» южная граница, а в качестве начальных – нулевые смещения, скорости смещений и напряжения во всех узлах и ячейках расчетной сетки. Границы литосферных плит при расчетах во внимание не принимались.

Критерием правильности рассчитанных моделей была принята степень соответствия расчетного поля напряжений данным «Мировой Карты Напряжений».

Качественная картина распределения напряжений в Европейском регионе (рис.5.20) была получена почти два десятка лет назад в работе (Müller et al., 1992), когда на основе визуального анализа первого выпуска «Мировой Карты Напряжений» (Zoback, 1992) было установлено, что ориентировка осей главных сжимающих напряжений в Западной Европе имеет ориентировку от C3-ЮВ до CC3-ЮЮВ, в пределах Скандинавского полуострова она меняется на 3C3-ВЮВ, в Панонском бассейне – на CB-ЮЗ, а в Альпах – на почти субширотную (З-В). Ориентировка главных осей растяжения определялась как субмеридиональная для Эгейского моря и Западной Анатолии. Полученные позднее количественные оценки, основанные на статистическом анализе данных «Мировой Карты Напряжений» (напр., (Olaiz et al., 2009; Heidbach et al., 2010)) позволили несколько уточнить характер распределения напряжений в данном регионе, в целом не опровергая первичной качественной оценки (Müller et al., 1992) *ориентировки* главных осей напряжений.

Рис.5.20. Результаты визуального усреднения «Мировой Карты Напряжений» из работы (Müller et al., 1992) Направленными друг на друга стрелками показаны главные оси сжатия; направленными в разные стороны стрелками показаны главные оси растяжения

Для рассчитанных в рамках настоящей работы модельных распределений напряжений (рис.5.23 и рис.5.24) характерна *ориентировка* главных осей, в целом хорошо согласующаяся с полученной в результате визуального (Müller et al., 1992) и количественного (Olaiz et al., 2009) усреднения данных «Мировой Карты Напряжений». Что касается распределения *режимов* деформаций, то оно не противоречит предлагаемому в работе (Olaiz et al., 2009): в пределах континентальной части Европы в целом преобладают близкие к сдвиговым растягивающие деформации, обстановка растяжения проявлена в горных поясах Пиренеев и Альп, Эгейском море и Апеннинском полуострове, а сжатия – в Тирренском, Адриатическом и Ионическом морях (рис.5.21). Важно обратить внимание, что на рис.5.21, взятом из работы (Olaiz et al., 2009), используются противоположные принятым в настоящей работе цвета обозначения сжимающих и растягивающих напряжений.

Рис.5.21. Карта распределения режимов напряжений из работы (Olaiz et al., 2009) Синим цветом показаны области распространения напряжений растяжения, а красным – сжатия

На рис.5.22 приведено распределение напряжений, полученное в результате статистической обработки «Мировой Карты Напряжений» по методике практически полностью аналогичной предложенной в настоящей работе для построения глобальной карты усредненных фактических данных (см. гл.2). Единственное отличие заключается в том, что в минимальное количество замеров в рамках радиуса усреднения, необходимое для того, чтобы ячейка считалась «заполненной», было принято равным не 5, а 1. Приведенные на рис.5.23 и рис.5.24 результаты расчетов напряжений в рамках моделей 1 и 2 в целом демонстрируют схожее их распределение, но на некоторых отличиях стоит остановиться. Модель 1 показывает, что обстановка сжатия доминирует практически во всем Средиземном и Черном море, в то время как согласно модели 2 западные части Средиземного и Черного морей находятся в состоянии растяжения. Субширотное сжатие, проявляющееся в модели 1 в Балтийском море и на территории Финляндии, никак не фиксируется на фоне субмеридионального растяжения в этой же области в модели 2. Сжимающие напряжения субширотной ориентировки на территории Восточно-Европейской платформы, непосредственно прилегающей к европейской герцино-альпийской области, в модели 2 распространены вдоль практически всей линии Торнквиста, а в модели 1 – только вдоль северной ее части. В модели 2 обращает на себя внимание достаточно интенсивное сжатие 3-В простирания в Северном море, никак не выраженное в модели 1.

Рис.5.22. Результаты статистического усреднения данных «Мировой Карты Напряжений» Синими линиями показаны ориентировки проекций на горизонтальную плоскость главных осей сжатия для взбросовых и взбросо-сдвиговых режимов, синими линями – главных осей растяжения для сбросовых и сбросо-сдвиговых режимов, зелеными линиями – главных осей сжатия для сдвиговых режимов.

Однозначное заключение относительно того, какое из предлагаемых полей напряжений (из модели 1 или модели 2) лучше согласуется с данными «Мировой Карты Напряжений», сделать на данном этапе исследований трудно. Также очевидно, что для достижения лучшей корреляции с фактическими данными, а также данными визуального и статистического усреднения наблюдаемой информации, необходимы некоторые модификации моделей, основанные на включении в расчеты новых источников напряжений.

Рис.5.23. Расчетное распределение напряжений в Европейском регионе (модель 1)

Рис.5.24. Расчетное распределение напряжений в Европейском регионе (модель 2)

Рис.5.25. Апеннинский полуостров: Расчетное поле напряжений (модель 1) и данные WSM

Рис.5.26. Апеннинский полуостров: Расчетное поле напряжений (модель 2) и данные WSM Красными линями показаны ориентировки максимальных осей расчетных тензоров, линии цвета морской волны – проекции на горизонтальную плоскость осей растяжения для сбросовых, сдвиго-сбросовых и сдвиговых режимов деформации по данным «Мировой Карты Напряжений» (Heidbach et al., 2008)

Рис.5.27. Южная часть Балканского полуострова: Расчетное поле напряжений (модель 1) и данные WSM

Рис.5.28. Южная часть Балканского полуострова: Расчетное поле напряжений (модель 2) и данные WSM Синими линями показаны ориентировки минимальных осей расчетных тензоров, фиолетовые линии – проекции на горизонтальную плоскость осей растяжения для взбросовых, сдвиго-взбросовых и сдвиговых режимов деформации по данным «Мировой Карты Напряжений» (Heidbach et al., 2008)

На рис.5.25-5.30 более детально (с реальным разрешением выполненных расчетов – 0,25°×0,25°) показаны результаты моделирования поля напряжений Европейского региона в рамках моделей 1 и 2 для Апеннинского полуострова, южной части Балканского полуострова и Британских островов. В отличие от всех приведенных выше рисунков, отображающих расчетное распределение напряжений, на рис.5.25-5.30 синими и красными линиями показаны ориентировки соответственно минимальных и максимальных осей расчетных тензоров. В виду того, что растяжение при вычислениях полагалось положительным, а сжатие отрицательным, для областей, в которых необходимо подчеркнуть ориентировку осей относительного растяжения, отображаются максимальные оси, а для районов, где наиболее интересны простирания главных осей относительного сжатия, – минимальные. Соответственно, при сравнении с наблюденными данными в качестве таковых в первом случае выступают проекции на горизонтальную плоскость главных осей растяжения замеров из «Мировой Карты Напряжений», которым соответствуют режимы деформаций, не имеющие в своем составе взбросовой компоненты (сбросы, сдвиго-сбросы, сдвиги), а во втором – главных осей сжатия для механизмов взбросового, сдвиговзбросового и сдвигового типов.

На рис.5.25 и рис.5.26 показано распределение расчетных (модель 1 и модель 2 соответственно) и наблюдаемых напряжений на Апеннинском полуострове. В пределах данной области, как говорилось выше, имеет место обстановка растяжения, поэтому на рисунках отображены ориентировки *максимальных* осей расчетных тензоров напряжений. Преимущественно СВ-ЮЗ простирание этих осей на самом полуострове переходит в ВСВ-ЗЮЗ до субширотного на острове Сицилия. Визуальное сопоставление позволяет говорить о достаточно хорошем соответствии рассчитанных напряжений (как в модели 1, так и в модели 2) данным конкретных замеров для материковой части показанного на рис.5.25 и рис.5.26 района.

Восточная часть Ионического моря, омывающая юго-западный берег Балканского полуострова, характеризуется достаточно высокой сейсмической активностью, причем большая часть механизмов землетрясений в данном районе взбросовые, что указывает на обстановку регионального сжатия. Ориентировка проекций на горизонтальную плоскость осей сжатия этих механизмов имеет СВ-ЮЗ простирание, перпендикулярное простиранию береговой линии. Ориентировки главных минимальных осей рассчитанных в рамках моделей 1 и 2 тензоров напряжений демонстрирует практически точное совпадение с главным направлением сжатия по фактическим данным (рис.5.27, рис.5.28). Субширотное сжатие в пределах материковой части показанного на рис.5.27 и рис.5.28. района (территория Греции) более точно воспроизводится в модели 1 (рис.5.27).

Рис.5.29. Британские острова: Расчетное поле напряжений (модель 1) и данные WSM

Рис.5.30. Британские острова: Расчетное поле напряжений (модель 2) и данные WSM Красными линями показаны ориентировки максимальных осей расчетных тензоров, линии цвета морской волны – проекции на горизонтальную плоскость осей растяжения для сбросовых, сдвиго-сбросовых и сдвиговых режимов деформации по данным «Мировой Карты Напряжений» (Heidbach et al., 2008)

Для Британских островов (рис.5.29, рис.5.30) имеется весьма ограниченный набор замеров в базе данных «Мировой Карты Напряжений». СВ-ЮЗ ориентировка проекций на горизонтальную плоскость осей растяжения трех фокальных механизмов в южной части острова Великобритания достаточно неплохо соответствует результатам расчетов в рамках модели 2, а субширотное растяжение по данным двух замеров на севере острова (на территории Шотландии) не получено ни в одной из рассчитанных моделей.

Таким образом, приведенные примеры подтверждают неоднозначность выбора лучшей из рассчитанных моделей с одной стороны, а с другой еще раз показывают, что даже в таком сложном с тектонической точки зрения регионе как Европа при детальном учете достаточного количества входной информации компьютерное моделирование может дать хорошо согласующиеся с наблюдаемыми данными результаты.

Заключение

В рамках настоящей работы выполнено численное моделирование поля напряжений с целью определения роли сил разности гравитационного потенциала в формировании напряженного состояния литосферы Земли.

Расчеты распределения напряжений производились с помощью разработанного автором программного обеспечения, представляющего собой реализацию оригинального алгоритма, основанного на численном решении уравнения равновесия среды методом конечных объемов с использованием явной консервативной численной схемы в Лагранжевых координатах. Созданный программный пакет позволяет выполнять вычисления, как в двухмерном, так и в трехмерном пространстве. Однако в силу ограниченной производительности современных стационарных компьютеров произвести полноценный трехмерный расчет напряженного состояния для всей литосферы Земли невозможно без привлечения технологий параллельных расчетов на многопроцессорных платформах. Поэтому представленные в данной работе результаты получены в результате двумерного моделирования. Поскольку в глобальном масштабе приближение моделируемой области в виде тонкой плоской поверхности не может быть принято допустимым, все вычисления производились на поверхности сферы.

Интегральные величины плотности и модуля Юнга, необходимые в качестве параметров среды в рамках чисто упругой задачи, а также прочность литосферы, задаваемая для каждой ячейки расчетной сетки в случае расчетов пластических, определялись исходя из предварительно рассчитанной трехмерной температурно-плотностной модели литосферы Земли. Термальное состояние вычислялось по методике, предполагающей совпадение подошвы литосферы с изотермой 1300°С. При этом распределение температур в континентальной литосфере полагалось стационарным, а в океанической – рассчитывалось в рамках модели остывающего полупространства. Введение в эти расчеты изостатической поправки позволило снизить степень влияния на итоговые результаты таких факторов как нестационарность теплового режима, неточность знаний о величине поверхностного теплового потока, коэффициента теплопроводности и параметров, определяющих теплогенерацию пород.

Рассчитанная термальная мощность литосферы хорошо согласуется с представлениями об утоненной литосфере под срединно-океаническими хребтами (Срединно-Атлантический, Аравийско-Индийскй, Восточно-Тихоокеанский и пр.) и плюмами (Гавайские о-ва, Азорские о-ва, Исландия и пр.) в океанах и рифтовыми системами на континентах (Восточно-Африканская, Байкальская, Калифорнийская и пр.). Мощность лито-

сферы под древними платформами (Восточно-Европейская, Восточно-Сибирская, Северо-Американская и пр.) составляет 150-200 км, под более молодыми складчатыми поясами наблюдается ее уменьшение до 50-70 км (например, Верхояно-Чукотская, Сихотэ-Алиньская области). Особый интерес представляют полученные большие значения мощности литосферы для Западно-Сибирской плиты (150 км), Уральского горно-складчатого сооружения (220 км), впадин Черного, Средиземного и Каспийского морей и Мексиканского залива (200 км), а также задугового бассейна Японского моря (150 км).

Количественная оценка сил разности гравитационного потенциала (обобщенных топографических сил), выступающих в настоящей работе в качестве источников возникающего в литосфере поля напряжений, выполнялась путем расчета разности гравитационной потенциальной энергии (интегралов распределения по глубине литостатического давления) в соседних по латерали областях литосферы. Эти вычисления также производились на основании предложенной в настоящей работе модели распределения плотностей в литосфере.

В качестве критерия, определявшего соответствие полученных моделей действительности, была принята степень совпадения расчетных полей напряжений с данными международного исследовательского проекта «Мировая Карта Напряжений». Главным недостатком любой базы данных такого рода является неравномерность распределения представленных в ней замеров. Для решения этой проблемы была разработана методика обработки данных «Мировой Карты Напряжений», позволяющая получать на выходе карту корректно усредненных напряжений, равномерно распределенных по заданной сетке. Несомненными преимуществом регулярно расположенных данных, которые с некоторой долей условности можно считать «фактическими», является возможность их количественного сопоставления с результатами модельных построений.

Визуальное и количественное сопоставление расчетных полей напряжений с фактическими данными и с результатами их усреднения позволило выбрать наилучшую модель (среди предлагаемых в настоящей работе). Распределение напряжений этой модели характеризуется следующими особенностями:

1) хорошо проявленные напряжения растяжения вдоль всех срединно-океанических хребтов, перпендикулярные простиранию этих структур;

 сжатие, перпендикулярное конвергентным границам литосферных плит, четко выраженное вдоль северной и западной субдукционных окраин Тихоокеанской литосферной плиты и чуть хуже - в пределах Центрально-Американской и Андской зон субдукции;

3) преобладание сжимающих напряжений в областях древней (20-150 млн. лет) океанической литосферы (в том числе в пределах пассивных окраин континентов) вследствие противонаправленного действия сил сползания с хребта и сил гравитационного расплывания континентов;

4) четко отражение океанических поднятий, связанные с внутриплитным магматизмом (Азорские острова, хребты Китовый, Рио-Гранде и Св. Марии в Атлантическом океане хребет Девяностого градуса хребет в Индийском океане, Гавайский и Императорские хребты в Тихом океане), в обстановке растяжения, развитой на этих структурах;

5) напряжения растяжения, перпендикулярные простиранию континентальных рифтовых систем – Восточно-Африканской-Красноморской, Байкальской, Момской, провинции Бассейнов и Хребтов, которые возникают вследствие действия сил сползания с термального свода;

6) обстановка растяжения в крупных континентальных орогенах – Центральных Андах, Тибете, Кавказе, Альпах – как результат преобладания сил гравитационного расплывания над силами сжатия;

7) доминирующая роль сжимающих напряжений в пределах Евразийского, Северо- и Южно-Американского континентов вследствие превышения сил суммарного сжатия со стороны прилегающих океанических областей на континенты над силами гравитационно- го расплывания материков;

8) региональное растяжение в пределах покрытых льдом Гренландии и Антарктиды.

Из приведенного описания видно, что расчетное поле напряжений в главном соответствует наблюдаемому и способно объяснить тектонические структуры первого порядка (континентальные и океанические рифтовые зоны, зоны субдукции, континентальные орогены, океанические внутриплитные поднятия и пр.). Поскольку при расчетах этой модели в качестве источников напряжений использовались только силы разности гравитационного потенциала, можно сделать заключение о том, что именно эти силы дают наиболее значительный вклад в существующее распределение литосферных напряжений. Остальные силы, которые могут быть рассмотрены в качестве потенциальных источников напряжений, – силы затягивания в зонах субдукции; силы мантийных течений – носят характер добавочных и не способны значительным образом исказить поле напряжений, образованное в результате действия обобщенных топографических сил.

Ранее опубликованные глобальные модели поля напряжений (Bird, 1998; Bird, Liu, 1999; Lithgow-Bertelloni, Guynn, 2004) характеризуются тем, что в них отсутствуют или плохо проявлены растягивающие напряжения в пределах океанических и континентальных рифтовых систем, отсутствуют какие-либо признаки гравитационного растекания орогенов, имеется значимое растяжение на древних платформах и пр. Поэтому можно констатировать, что полученное в рамках настоящей работы распределение напряжений

не только не уступает, но и в чем-то значительно превосходит по качеству предлагаемые в этих работах модели.

Региональное моделирование, характеризующееся большей детальностью по сравнению с глобальным, производилось для Европейского и Черноморско-Кавказско-Каспийского регионов.

Региональная модель поля напряжений Европы показала, что в пределах большей части континентальной области в целом преобладают близкие к сдвиговым растягивающие деформации, обстановка растяжения проявлена в горных поясах Пиренеев и Альп, Эгейском море и Апеннинском полуострове, а сжатия – в Тирренском, Адриатическом и Ионическом морях.

Согласно результатам моделирования поля напряжений в Черноморско-Кавказско-Каспийском регионе установлено, что Черное и Каспийское моря находятся в обстановке сжатия; региональное растяжение проявлено главным образом в пределах горных сооружений и в регионе Эгейского моря. Более точное совпадение результатов расчетов с фактическими данными, полученное для южной части Каспийского моря в модели, учитывающей влияние Аравийской плиты, по сравнению с моделью, рассчитанной без учета этого влияния, говорит о существенной роли сжимающего воздействия Аравии на Евразию в формировании регионального поля напряжений в литосфере последней. Однако, тот факт, что данное воздействие было зафиксировано в модели без привлечения каких-либо иных источников кроме сил разности гравитационного потенциала литосферы, порожденных плотностными литосферными неоднородностями, позволяет объяснить наблюдаемое вращательное движение Аравийской плиты в рамках теории его сползания с Красноморского термального свода без привлечения других механизмов. Распределение амплитуд литосферных складок, возникающих в рассматриваемом регионе как результат действия расчетных напряжений, демонстрирует наибольшие величины прогибания в пределах восточной части Черного моря и Южно-Каспийской впадины. Это хорошо согласуется с данными о быстром плиоцен-четвертичном погружении в этих районах и подтверждает модель, согласно которой это погружение связано с синкомпресионным изгибом литосферы.

Главным результатом настоящей работы является вывод об определяющей роли сил разности гравитационного потенциала в формировании современного поля напряжений. Этот вывод сделан на основании выполненного численного моделирования напряженного состояния, которое показало, что распределение напряжений, хорошо согласующееся с наблюдаемым и описывающие все главные структуры литосферы Земли, может быть получено при использовании в качестве источников напряжений только обобщенных топографических сил.

Список литературы

1. Геотраверс «Гранит»: Восточно-Европейская платформа – Урал – Западная Сибирь (строение земной коры по результатам комплексных геолого-геофизических исследований). Под. ред. Кашубина С.Н. Екатеринбург: Главное управление природных ресурсов и охраны окружающей среды МПР России по Свердловской области, ФГУГП «Баженовская геофизическая экспедиция». 2002. 312 с.

2. Артюшков Е.В. Геодинамика. М.: Наука. 1979. 327 с.

3. *Артюшков Е.В.* Глубинный механизм образования крупных нефтегазоносных бассейнов и поиск новых бассейнов по геодинамическим признакам // Материалы XLIII Тектонического совещания «Тектоника и геодинамика складчатых поясов и платформ фанерозоя». Москва. МГУ. 2010. т. 1. с. 13-18.

4. *Артюшков Е.В.* Механизмы образования Баренцевоморского прогиба // Геология и геофизика. 2005. т. 46. № 7. с. 698-711.

5. Артюшков Е.В. Образование сверхглубокой впадины в Южном Каспии вследствие фазовых переходов в континентальной коре // Геология и геофизика. 2007. т. 48. № 12. с. 1289-1306.

6. Артюшков Е.В. Физическая тектоника. М.: Наука. 1993. 456 с.

7. *Артюшков Е.В., Егоркин А.В.* Физический механизм образования сверхглубоких осадочных бассейнов. Прикаспийская впадина // Доклады Академии Наук. 2005. т. 400. № 4. с. 494-499.

8. *Ершов А.В.* Реология литосферы. В: Геоисторический и геодинамический анализ осадочных бассейнов. М.: МПР РФ. 1999. с. 267-299.

9. *Ершов А.В.* Моделирование эволюции осадочных бассейнов и деформации литосферы (на примере бассейнов Восточно-Европейской и Скифской платформ). Автореферат диссертации на соискание ученой степени кандидата г.-м. наук. М. 1997. 21 с.

10. *Ершов А.В.* Эффективная упругая толщина и эффективная средняя поверхность литосферы // Материалы Всероссийской научной конференции «Геология, геохимия и геофизика на рубеже XX и XXI веков». т. 3. Геофизика. Москва. 2002. с. 196-197.

11. *Кашубин С.Н.* Особенности методики сейсмических исследований по геотраверсу "Гранит"// Геотраверс "Гранит". Методика и результаты исследований. Екатеринбург: УРГК и УТП ВНТГео. 1992. с. 22-32.

12. *Коротаев М.В.* Осадочные бассейны в обстановке сжатия – моделирование фаз быстрого погружения. Автореферат диссертации на соискание ученой степени кандидата г.-м. наук. М. 1998.

13. *Коротаев М.В., Ершов А.В.* Осадочные бассейны с океанической корой в обстановке сжатия – моделирование погружения Южного Каспия, Черного и Баренцева морей // Материалы XXXII тектонического совещания «Тектоника, геодинамика и процессы магматизма и метаморфизма». Москва. МГУ. 1999. т. 1. с. 325-327.

14. *Коротаев М.В., Ершов А.В., Никишин А.М.* Осадочные бассейны в обстановке сжатия: моделирование фаз быстрого погружения Южно-Каспийского, Черноморского и Баренцевоморского бассейнов // Материалы Всероссийской научной конференции «Геология, геохимия и геофизика на рубеже XX и XXI веков». т. 1. Тектоника, стратиграфия, литология. Москва. 2002. с. 190-191.

15. *Коротаев М.В., Ершов А.В., Фокин П.А.* Синкомпрессионная литосферная складчатость Восточно-Европейской платформы // Вестник Московского Университета. сер. 4. Геология. 2004. № 4. с. 3-10.

16. *Костюченко С.Л.* Глубинные тектонические дислокации и их роль в формировании земной коры Севера Евразийского материка. Автореферат диссертации на соискание ученой степени доктора геолого-минералогических наук. М. 1997. 59 с.

17. *Костюченко С.Л.* Структура и тектоническая модель земной коры Мезенской синеклизы по результатам комплексного геолого-геофизического изучения // Разведка и охрана недр. № 5. 1995. с. 2-7.

18. *Костюченко С.Л., Егоркин А.В., Солодилов Л.Н.* Тектоническая модель докембрия Московской синеклизы по результатам комплексных региональных исследований // Разведка и охрана недр. 1995. № 5. с. 8-12.

19. *Костюченко С.Л., Солодилов Л.Н.* К геологическому строению Московии: глубинная структура и тектоника // Бюл. МОИП. Отд. Геол. 1997. т. 72. вып. 5. с. 6-17.

20. *Костюченко С.Л., Исмаил-заде А.Т.* Природа интенсивных фаз седиментогенеза в Московской синеклизе по результатам глубинного изучения и количественного анализа разрезов скважин // Разведка и охрана недр. 1998. № 5. с. 36-40.

21. *Костюченко С.Л., Морозов А.Ф.* Геолого-геофизические образы земной коры и верхней мантии территории России в картах и моделях // Материалы международного научнопрактического семинара «Модели земной коры и верхней мантии по результатам глубинного сейсмопрофилирования». С.-Пб. 2007. с. 82-85.

22. *Кочин Н.Е.* Векторное исчисление и начала тензорного исчисления. М.: Наука. 1965. 424 с.

23. *Левин Б.В., Родкин М.В., Сасорова Е.В.* О возможной природе сейсмической границы на глубине 70 км. // Доклады Академии Наук. 2007. т. 414. № 1. с. 101-104.

24. *Левин Б.В., Родкин М.В., Сасорова Е.В.* Особенности сейсмического режима литосферы – проявления воздействия глубинного водного флюида // В кн.: Тектонофизика и актуальные вопросы наук о Земле. Материалы докладов Всероссийской конференции. 2009. т.2. М.: ИФЗ РАН. с. 345-353.

25. *Левин Б.В., Родкин М.В., Сасорова Е.В.* Особенности сейсмического режима литосферы – проявления воздействия глубинного водного флюида // Физика Земли. 2010. № 5. с. 88–96.

26. Лобковский Л.И., Никишин А.М., Хаин В.Е. Современные проблемы геотектоники и геодинамики. М.: Научный мир. 2004. 612 с.

27. Макклинток Ф., Аргон А. Деформация и разрушение материалов. М.: Мир. 1970. 443 с.

28. *Милановский Е.Е.* Геология России и ближнего зарубежья (Северной Евразии). М.: Московский Университет. 1996. 448 с.

29. *Милановский Е.Е.* Геология СССР. Часть 3. Средиземноморский и Тихоокеанский подвижные пояса. Заключение. М.: Московский Университет. 1991. 272 с.

30. *Мухамедиев Ш.А.* Неклассические краевые задачи механики сплошной среды для геодинамики // Доклады Академии Наук. 2000. т. 373. № 2. с. 242-246.

31. *Мухамедиев Ш.А., Галыбин А.Н.* Прямой подход к определению региональных полей напряжений (на примере Западно-Европейской, Северо-Американской и Австралийской платформ) // Физика Земли. 2001. № 8. с. 23-41.

32. *Никишин А.М.* Тектонические обстановки. Внутриплитные и окраинноплитные процессы. М.: Московский Университет. 2002. 366 с.

33. *Павленкова Н.И.* Строение верхней мантии Сибирских платформ по данным ядерных взрывов // Тезисы международной конференции, посвященной памяти В.Е. Хаина "Современное состояние наук о Земле". 2011. Москва. МГУ. с. 1392-1395.

34. *Павленкова Н.И.* Структура верхней мантии Сибирской платформы по данным, полученным на сверхдлинных сейсмических профилях // Геология и геофизика. 2006. т. 47. № 5. с. 630-645.

35. *Павленкова Н.И.* Структура земной коры глубоких осадочных бассейнов по сейсмическим данным // Физика Земли. 1988. № 4. с.72-82.

36. *Павленкова Н.И.* Структура земной коры и верхней мантии по сейсмическим данным // Строение и динамика литосферы Восточной Европы. Результаты исследований по программе EUROPROBE. Очерки по региональной геологии России. М.: ГЕОКАРТ: ГЕОС 2006. т. 2. с. 559-599.

37. *Ребецкий Ю.Л.* Методы реконструкции тектонических напряжений и сейсмотектонических деформаций на основе современной теории пластичности. // Доклады Академии Наук. 1999. т. 365. № 3. с. 392-395.

38. *Ребецкий Ю.Л.* Напряженно-деформированного состояния и механические свойства природных массивов по данным о механизмах очагов землетрясений и структурно-кинематическим характеристикам трещин. // Автореферат на соискание ученой степени доктора физ.-мат. наук. М. 2003. 56 с.

39. *Ребецкий Ю.Л.* Развитие метода катакластического анализа сколов для величин тектонических напряжений. // Доклады Академии Наук. 2003. т. 388. № 2. с. 237-241.

40. *Ребецкий Ю.Л., Маринин А.В.* Напряженное состояние земной коры западного фланга Зондской субдукционной зоны перед Суматра-Андаманским землетрясением 26.12.2004 г. // Доклады Академии Наук. 2006. т. 406. № 1. с. 106-110.

41. *Ребецкий Ю.Л., Маринин А.В.* Поле напряжений до Суматра-Андаманского землетрясения 26.12.2004. Модель метастабильного состояния горных пород. // Геология и геофизика. 2006. т. 47. № 11. с. 1192-1206.

42. *Смирнов Я.Б.* Тепловое поле территории СССР (пояснительная записка к картам теплового потока и глубинных температур в масштабе 1: 10 000 000). М.: ГУГК. 1980. 150 с.

43. Сулейманов А.К., Заможняя Н.Г., Павленкова Н.И. Комбинированные сейсмические исследования методами ОГТ и ГСЗ Восточно-Европейского кратона (профиль 1-ЕВ) // Модели земной коры и верхней мантии по результатам глубинного сейсмопрофилирования. С.-Пб.: ВСЕГЕИ. 2007. с. 229-232.

44. *Теркот Д., Шуберт Дж.* Геодинамика. Геологическое приложение физики сплошных сред. М: Мир. 1985. 727 с.

45. Уеда С. Новый взгляд на Землю. М.: Мир. 1980. 213 с.

46. *Хаин В.Е., Ломизе М.Г.* Геотектоника с основами геодинамики. М.: Московский Университет. 2005. 560с.

47. Хачай Ю.В., Голованова И.В., Гордиенко В.В, Дучков А.Д., Кашубин С.Н., Кашубина Т.В., Кутас Р.И., Щапов В.А. Геотермический разрез литосферы вдоль геотраверса «Гранит» // Литосфера. 2002. № 3. с. 38-45.

48. *Хачай Ю.В., Дружинин В.С.* Возможности применения геотермии для восстановления динамики переходной зоны мантии Урала // Глубинное строение и развитие Урала. Екатеринбург: Наука. 1996. с. 298-306.

49. *Хачай Ю.В., Дружинин В.С.* Геотермический разрез литосферы Урала вдоль широтных профилей ГСЗ // Физика Земли. 1998. № 1. с. 67-70.

50. *National Geophysical Data Center*. ETOPO-5 bathymetry and topography data // Data Announc. 88-MGG-02. NOAA. Boulder. Colorado. 1988.

51. *Anderson D.L., Sammis C.G.* Partial melting in the upper mantle // Phys. Earth Planet. Inter. 1970. V. 3. P. 41–50.

52. *Artemieva I.M.* Dynamic topography of the East European craton: Shedding light upon lithospheric structure: Composition and mantle dynamics // Glob. Planet. Change. 2007. doi: 10.1016/j.gloplacha.2007.02.013.

53. *Artemieva I.M.* Global $1^{\circ} \times 1^{\circ}$ thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution // Tectonophysics. 2006. V. 416. P. 245-277.

54. *Artemieva I.M.* Lithospheric structure, composition, and thermal regime of the East European Craton: implications for the subsidence of the Russian platform // Earth Planet. Sci. Lett. 2003. V. 213. P. 413-446.

55. *Artemieva I.M.* The continental lithosphere: Reconciling thermal, seismic, and petrologic data // Lithos. 2009. V. 109. P. 23-46.

56. *Artemieva I. M., Mooney W.D.* Thermal thickness and evolution of Precambrian lithosphere: A global study // J. Geophys. Res. 2001. V. 106 (B8). P. 16,387-16,144.

57. *Artemieva I.M., Thybo H.* Deep Norden: Highlights of the lithospheric structure of Northern Europe, Iceland, and Greenland // Episodes. 2008. V. 31 (N1). P. 98-106.

58. *Artemieva I.M., Thybo H., Kaban M.K.* Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5Ga // In: Gee D.S., Stephenson R.A. (Ed.) European Lithosphere Dynamics. 2006. Geological Society. London. Memoirs. 32,11-41.0435-4052/06/\$15.00.

59. *Artyushkov E.V.* Stresses in the lithosphere caused by crustal thickness inhomogeneities // J. Geophys. Res. 1973. V. 78. P. 7675-7708.

60. Barrell J. The strength of the Earth's crust. // J. of Geology. 1914. V. 22. P. 425-433.

61. Barrell J. The strength of the Earth's crust. // J. of Geology. 1914. V. 22. P. 441-468.

62. Barrell J. The strength of the Earth's crust. // J. of Geology. 1914. V. 22. P. 655-683.

63. *Bassin C., Laske G., Masters G.* The Current Limits of Resolution for Surface Wave Tomography in North America // EOS Trans AGU. 2000. 81. F. 897.

64. *Bird P.* An updated digital model of plates boundaries // Geochemistry, Geophysics, Geosystems. An electronic journal of the Earth sciences. 2003. Vol. 4 (N3). 1027. doi: 10.1029/2001GC000252. ISSN: 1525-2027.

65. *Bird P*. Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults // J. Geophys. Res. 1998. V. 103. P. 10,115-10,129.

66. *Bird P., Liu Z.* Global finite-element model makes a small contribution to intraplate seismic hazard // Bull. Seismol. Soc. Am. 1999. V. 89. P. 1642-1647.

67. *Brunet M.-F., Korotaev M.V., Ershov A.V., Nikishin A.M.* The South Caspian Basin: a review of its evolution from subsidence modelling // Sedimentary Geology. 2003. V. 156. P. 119-148.

68. *Burbidge D.R.* Thin plate neotectonic models of the Australian plate // J. Geophys. Res. 2004. V. 109. 10405. doi: 10.1029/2004JB003156.

69. *Burov E.B., Diament M.* The effective elastic thickness (T_e) of continental lithosphere: What does it really mean? // J. Geophys. Res. 1995. V. 100 (B3). P. 3905-3927.

70. *Burov E.B., Lobkovsky L.I., Cloetingh S.,* Continental lithosphere folding in Central Asia (part II): Constraints from gravity and topography // Tectonophysics. 1993. V. 226. P. 73-87.

71. *Cermak V., Rybach L.* Thermal conductivity and specific heat of minerals and rocks // In Angenheister G. (Ed.). Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology. Springer-Verlag. New York. 1982. P. 213-256.

72. *Clauser C., Huenges E.* Thermal Conductivity of Rock and Mineral // In: Ahrens T.J. (Ed.). AGU Reference Shelf. V. 3. Rock Physics & Phase Relations: A Handbook of Physical Constants. Washington. DC. American Geophysical Union. 1995. P. 105-126.

73. Cloetingh S.A.P.L., Ziegler P.A., Bogaard P.J.F., Andriessen P.A.M., Artemieva M., Bada G., vanBalen R.T., Beekman F., Ben-Avraham Z., Brun J.-P., Bunge H.P., Burov E.B., Carbonell R., Facenna C., Friedrich A., Gallart J., Green A.G., Heidbach O., Jones A.G., Matenco L., Mosar J., Oncken O., Pascal C., Peters G., Sliaupa S., Soesoo A., Spakman W., Stephenson R.A., Thybo H., Torsvik T., deVicente G., Wenzel F., Wortel M.J.R. TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes // Glob. Planet. Change. 2007. doi: 10.1016/j.gloplacha.2007.02.008.

74. *Coblentz D.D., Richardson R.M.* Analysis of the South American intraplate stress field // J. Geophys. Res. 1996. V. 101. P. 8643–8657.

75. *Coblentz D.D., Richardson R.M., Sandiford M.* On the gravitational potential of the Earth's lithosphere // Tectonics. 1994. V. 13. P. 929-945.

76. *Coblentz D., Richardson R.M.* Statistical trends in the intraplate stress field // J. Geophys. Res. 1995. V. 100 (B10). P. 20245-20255.

77. *Coblentz D., Sandiford M.* Tectonic stresses in African plate: Constraints on the ambient lithospheric stress state // Geology. 1994. V. 22. P. 831-834.

78. *Coblentz D.D., Sandiford M., Richardson R.M., Zho S., Hillis R.* The origins of the intraplate stress field in continental Australia // Earth Planet. Sci. Lett. 1995. V. 133. P. 299-309.

79. Coblentz D.D., Zhou S., Hillis R.R., Richardson R.M., Sandiford M. Topography, boundary forces, and the Indo-Australian intraplate stress field // J. Geophys. Res. 1998. V. 103. P. 919-931.

80. *Dahlen F.A.* Isostasy and the ambient state of stress in the oceanic lithosphere // J. Geophys. Res. 1981. V. 86. P. 7801-7807.

81. *England P.C.* Diffuse deformation: Length scales, rates and metamorphic evolution // Phylos. Trans. R. Soc. London A. 1987. V. 321. P. 3-22.

82. *England P.C., McKenzie D.* A thin viscous sheet model of continental deformation // Geophys. J. R. Astron. Soc. 1982. V. 70. P. 295-321.

83. *Ershov A.V.* Effective middle surface of lithosphere // Earth Planet. Sci. Lett. 1999. V. 173.P. 129-141.

84. *Ershov A.V., Brunet M.-F., Korotaev M.V., Nikishin A.M., Bolotov S.N.* Late Cenozoic burial history and dynamics of the Northern Caucasus molasse basin: implications for foreland basin modelling. In: Stephenson R.A., Wilson M., Starostenko V.I. (Ed.) EUROPROBE Georift. V. 2: Intraplate Tectonics and Basin Dynamics of the Eastern European Craton and its Margins. Tectonophysics. 1999. V. 313. P. 219–241.

85. *Ershov A.V., Brunet M.-F., Nikishin A.M., Bolotov S.N., Korotaev, M.V., Kosova S.S.* Evolution of the eastern Fore-Caucasus basin during the Cenozoic collision: burial history and dynamic modelling. In: Crasquin-Soleau S., Barrier E. (Ed.) Peri-TethysMemoir 4: Epicratonic Basins of Peri-Tethyan Platforms. 1998. Memoires du Museum national d'Histoirenaturelle. Paris. V. 179. P. 111-130.

86. Ershov A.V., Brunet M.-F., Nikishin A.M., Bolotov S.N., Nazarevich B.P., Korotaev M.V. Northern Caucasus basin: thermal history and synthesis of subsidence models // Sedimentary Geology. 2003. V. 153. P. 95-118.

87. *Ershov A.V., Stephenson R.A.* Implications of a visco-elastic model of the lithosphere for calculating yield strength envelopes // J. of Geodynamics. 2006. V. 42. P. 12-27.

88. *Fleitout L., Froidevaux C.* Tectonics and topography for a lithosphere containing density heterogeneities // Tectonics. 1982. V. 1. P. 21-56.

89. *Fleitout L., Froidevaux C.* Tectonic stresses in the lithosphere // Tectonics. 1983. V. 2. P. 315-324.

90. *Flesch L.M., Holt W.E., Haines A.J., Shen-Tu B.* Dynamics of the Pacific-North American plate boundary in the western United States // Science. 2000. V. 287. P. 834-836.

91. *Forsyth D., Uyeda S.* On the relative importance of the driving forces of plate motion // Geo-phys. J.R. Astron. Soc. 1975. V. 43. P. 163-200.

92. *Frank F.C.* Plate tectonics, the analogy with glacier flow, and isostasy, in Flow and Fracture of Rocks // Geophys. Monogr. Ser. 1972. V. 16. P. 285-292.

93. *Galybin A.N., Mukhamediev Sh.A.* Plane elastic boundary value problem posed on orientation of principal stresses // J. Mech. Phys. Solids. 1999. V. 47. P. 2381-2409.

94. Golke M., Coblentz D. Origins of the European regional stress field // Tectonophysics. 1996.V. 266. P. 11–24.

95. *Grand S.P.* Mantle shear-wave tomography and the fate of subducted slabs // Philosophical Transactions of the Royal Society of London. 2002. Series A. V. 360. P. 2475–2491.

96. *Harper J.R.* On the driving forces of plate tectonics // Geophys. J. R. Astron Soc. 1975. V. 40. P. 465-474.

97. Heidbach O., Barth A., Connolly P., Fuchs K., Müller B., Reinecker J., Sperner B., Tingay B., Wenzel F. Stress maps in a minute: The 2004 World Stress Map Release // Eos Trans. 2004.
V. 85 (49). P. 521-529.

98. *Heidbach O., Reinecker J., Tingay M., Müller B., Sperner B., Fuchs K., Wenzel F.* Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database // Tectonics. 2007. V. 26 (TC6014). doi: 10.1029/2007TC002133.

99. *Heidbach O., Fuchs K., Muller B., Reinecker J., Sperner B., Tingay M., Wenzel F. (eds)* The World Stress Map – Release 2005. Commission for the Geological Map of the World. 2007. Paris.

100. *Heidbach O., Tingay M., Barth A., Reinecker J., Kurfeβ D., Müller B.* Global crustal stress pattern based on the World Stress Map data base release 2008 // Tectonophysics. 2010. V. 482. P. 3-15.

101. *Heidbach O., Tingay M., Barth A., Reinecker J., Kurfeβ D., Müller B. (eds.)* The World Stress Map – Release 2008. Commission for the Geological Map of the World. 2008. Paris.

102. *Houseman G., McKenzie D., Molnar P.* Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergence zones // J. Geophys. Res. 1981. V. 86. P. 6115-6132.

103. *Jaupart C., Mareschal J.-C.* Thermal structure and thickness of continental roots // Lithos. 1999. V. 48. P. 93-114.

104. *Jimenes-Munt I., Bird P., Fernandes M.* Thin-shell modeling of neotectonics in the Azores-Gibraltar region // Geophys. Res. Lett. 2001. V. 28 (N6). P. 1083–1086.

105. *Jimenez-Munt I., Sabadini R., Gardi A., Bianco G.* Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data // J. Geophys. Res. 2003. V. 108 (B1). doi: 10.1029/2001JB001544.

106. *Korotaev M., Ershov A., Nikishin A., Brunet M.-F.* Sedimentary basin sincompressional environment-modelling of the rapid subsidence // EAGE Meeting. June 1999. Helsinki, Finland.

107. *Leemans R., Cramer W.* The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid // Research Report RR-91-18. International Institute of Applied Systems Analyses. Laxenburg. November 1991. P. 61.

108. Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H., Olson T.R. The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96 // NASA Goddard Space Flight Center. Greenbelt. Maryland. 20771. USA. July 1998.

109. *Lieth H.* Modelling the primary productivity of the earth. Nature and resources // UNESCO. 1972. VIII. 2:5-10.

110. *Lister C.P.* Gravitational drive on oceanic plates caused by thermal contraction // Nature. 1975. V. 257. P. 663-665.

111. *Lithgow-Bertelloni C., Guynn J.* Origin of the lithospheric stress field // J. Geophys. Res. 2004. V. 109. 01408. doi: 10.1029/2003JB002467.

112. *Liu Z., Bird P.* Computer simulation of Neotectonics in Latitudes 22°–70°, western North America (abstract) // Eos Trans. AGU, Fall Meet. Suppl. 1998. V. 79. F. 566.

113. *Liu Z., Bird P.* Finite element modeling of neotectonics in New Zealand // J. Geophys. Res. 2002. V. 107 (B12). 2328. doi: 10.1029/2001JB001075.

114. *Marotta A.M., Bayer U., Thybo H., Scheck M.* Origin of the regional stress in North German Bassin: results from numerical modeling // Tectonophysics. 2002. V. 360. P. 245-264.

115. *Marotta A.M., Mitrovica J.X., Sabadini R., Milne G.* Combined effects of tectonics and glacial isostatic adjustment on intraplate deformation in central and northern Europe: Applications to geodetic baseline analyses // J. Geophys. Res. 2004. V. 109 (B01413). doi: 10.1029/2002JB002337.

116. *Mantovani E., Viti M., Albarello D., Tamburelli C., Babbucci D., Cenni N.* Role of kinematically induced horizontal forces in Mediterranean tectonics: insights from numerical modeling // J. of Geodynamics. 2000. V. 30. P. 287-320.

117. *Meijer P.T., Govers R., Wortel M.J.R.* Forces controlling the present-day state of stress of the Andes // Earth Planet. Sci. Lett. 1997. V. 148. P. 157-170.

118. Minster J.B., Jordan T.H. Present-day plate motions // J. Geophys. Res. 1978. V. 83. P. 5331-5354.

119. *Molnar P., Lyon-Caen H.* Some simple physical aspect of the support, structure, and evolution of mountain belts // Spec. Pap. Geol. Soc. Am. 1988. V. 218. P. 179-207.

120. *Molnar P, Tapponier P.* Active tectonics of Tibet // J. Geophys. Res. 1978. V. 83. P. 5361-5375.

121. *Mooney A., Laske G., Masters G.* Crust 5.1: a global crustal model at 5x5 degrees // J. Geophys. Res. 1998. V. 103. P. 727-747.

122. *Mukhamediev Sh.* Global stresses in the Western Europe lithosphere and the collision forces in the Africa-Eurasia convergence zone // Russian Journal of Earth Science. 2002. V. 4 (N1). P. 1-17.

123. *Mukhamediev Sh.A., Galybin A.N., Brady B.H.G.* Determination of the stress fields in the elastic lithosphere by methods based on the stress orientations // Int. J. of Rock Mechanics and Minning Sciences. 2006. V. 43. P. 66-88.

124. Müller B., Zoback M.L., Fuchs K., Mastin L., Gregersen S., Pavoni N., Stephansson O., Ljunggren C. Regional patterns of tectonic stress in Europe // J. Geophys. Res. 1992. V. 97. P. 11783-11803.

125. *Müller R.D., Roest W.R., Royer J.-Y., Gahagan L.M., Sclater J.G.* Digital isochrons of the ocean age // J. Geophys. Res. 1997. V. 102 (B2). P. 3211-3214.

126. *Nikishin A.M., Brunet M.-F., Cloetingh S., Ershov A.V.* Northern Peri-Tethyan Cenozoic intraplate deformations: influence of the Tethyan collision belt on the Eurasian continent from Paris to Tian-Shan // C.R. Acad. Sci. Paris. 1997. t. 324. serie II a. P. 49-57.

Cloetingh S., Lobkovsky L.I., Burov E.B., Lankreijer A.C. Continental lithosphere folding in Central Asia (part I): Constraints from geological observations // Tectonophysics. 1993. V. 226. P. 59-72.

128. *Nikishin A.M., Korotaev M.V., Ershov A.V., Brunet M.-F.* The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modelling // Sedimentary Geology. 2003. V. 156. P. 149-168.

129. Olaiz A.J., Muñoz-Martín A., DeVicente G., Vegas R., Cloetingh S. European continuous active tectonic strain-stress map // Tectonophysics. 2009. V. 474. P. 33-40.

130. *Pacanovsky K., Davis D., Richardson R., Coblentz D.* Interplate stresses and plate-driving forces in the Philippine Sea Plate // J. Geophys. Res. V. 104 (B1). P. 1095-1110.

131. *Parsons B., Ritcher M.* A relation between driving force and geoid anomaly associated with mid-ocean ridge // Earth Planet. Sci. Lett. 1980. V. 51. P. 445-450.

132. *Pfiffner O.A., Ellis S., Beaumont C.* Collision tectonics in the Swiss Alps: Insight from geodynamic modeling // Tectonics. 2000. V.19 (N6). P. 1065-1094.

133. *Poliakov A., Cundall P., Podladchikov Yu., Lyakhovsky V.* An explicit inertial method for the simulation of viscoelastic flow: An evaluation of elastic effects on diapiric flow in two and three layer models. Proceeding of NATO Advanced Study Institute on Dynamic Modeling and

Flow in the Earth and Planets // In: Stone D.B., Runcorn S.K. (Ed.). Flow and Creep in the Solar system: Observations, Modeling and Theory. Kluwerr. Holland. 1993. P. 175-195.

134. Ranalli G. Rheology of the Earth, second edition. Chapman & Hall. 1995. 407 p.

135. Reilinger R., McClusky S., Vernant P., Lawrence S., Ergintav S., Cakmak R., Ozener H., Kadirov F., Guliev I., Stepanyan R., Nadariya M., Hahubia G., Mahmoud S., Sakr K., ArRajehi A., Paradissis D., Al-Aydrus A., Prilepin M., Guseva T., Evren E., Dmitrotsa A., Filikov S.V., Gomez F., Al-Ghazzi R., Karam G. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions // J. Geophys. Res. 2006. V. 111 (B05411). doi:10.1029/2005JB004051.

136. *Reynolds S.D., Coblentz D.D., Hillis R.R.* Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling // J. Geophys. Res. 2002. V. 107 (B7). 2131. doi: 10.1029/2001JB000408.

137. *Richardson R., Reding L.* North American Plate Dynamics // J. Geophys. Res. 1991. V. 96 (B7). P. 12,201-12,223.

138. *Richardson R.M., Solomon S.C., Sleep N.H.* Intraplate stress as an indicator of plate tectonic driving forces // J. Geophys. Res. 1976. V. 81. P. 1847-1856.

139. *Richardson R.M., Solomon S.C., Sleep N.H.* Tectonic stress in the plates // Rev. Geophys. 1979. V. 17. P. 981-1019.

140. *Robinson A.G., Rudat J.H., Banks C.J., Wiles R.L.F.* Petroleum geology of the Black Sea // Marine and Petroleum Geology. 1996. V. 13. P. 195-223.

141. *Rybach L., Buntebarth G.* Relationships between the petrophysical properties:density,seismic velocity,heat generation and mineralogical constitution // Earth Planet Sci. Lett. 1982. Vol. 57. P. 367-376.

142. *Sandiford M., Coblentz D., Richardson R.* Ridge torques and continental collision in the Indian-Australian plate // Geology. 1995. V. 23 (N7). P. 653-656.

143. *Sato H., Sacks I.S., Murase T.* The use of laboratory velocity data for estimating temperature and partial melt fraction in the low-velocity zone: Comparison with heat flow and electrical studies // J. Geophys. Res. 1989. V. 94. P. 5689–5704.

144. *Scharmeli G.* Identification of radio active thermal conductivity in olivine up to 25 kbar and 1500 K // In Timmerhauf K.D. and Barber M.S. (Ed.). Proceedings of the 6th Air apt Conference. Plenum. New York. 1979. P. 60-74.

145. *Schatz J.F., Simmons G.* Thermal conductivity of Earth minerals at high temperatures // J. Geophys. Res. 1972. V. 77. P. 6966-6983.

146. *Seipold U.* Depth dependence of thermal transport properties for typical crustal rocks // Phys. Earth Planet. Inter. 1992. V. 69. P. 299-303.

147. *Shapiro N.M., Ritzwoller M.H.* Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle // Geophysical Journal International. 2002. V.151. P. 1–18.

148. *Solomon S.C., Sleep N.H., Richardson R.M.* On the forces driving plate tectonics: Inferences from absolute plate velocities and intraplate stress // Geophys. J. R. Astron. Soc. 1975. V. 42. P. 769-801.

149. *Spadini G., Robinson A.G., Cloetingh S.A.P.L.* Thermomechanical modelling of Black Sea basin formation, subsidence, and sedimentation. In: Robinson A.G. (Ed.). Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists, Memoir. 1997. V. 68. P. 19-38.

150. *Steckler M.S., Watts A.B.* Subsidence of the Atlantic-type continental margin off NewYork // Earth Planet. Sci. Lett. 1978 V. 41. P. 1-13.

151. *Stein C.A.* Heat flow of the Earth. // In: Ahrens T.J. (Ed.). AGU Reference Shelf. V. 1. Global Earth Physics: A Handbook of Physical Constants. Washington, DC. American Geophysical Union. 1995. P.144-158.

152. *Stephenson R., Lambeck K.* Isostatic Response of the Lithosphere With In-Plane Stress: Application to Central Australia // J. Geophys. Res. 1985. V. 90 (B10). P. 8581-8588.

153. Stephenson R.A., Ricketts B.D., Cloetingh S.A., Beekman F. Lithosphere folds in the Eurekan orogen, Arctic Canada // Geology.1990. V. 18 (N7). P. 603-606.

154. *Tesauro M., Kaban M. K., Cloetingh S.A.P.L.* EuCRUST-07: A new reference model for the European crust // Geophys. Res. Lett. 2008. V. 35. L05313. doi:10.1029/2007GL32244.

155. *Zhou S., Sandiford M.* On stability of isostatically compensated mountain belt // J. Geophys. Res. 1992. V. 97. P. 14,207-14,221.

156. *Zoback M.L.* First and second order patterns of stress in the lithosphere: The World Stress Map Project // J. Geophys. Res. 1992. V. 97. P. 11703-11728.

157. *Zoback M.D., Zoback M.L.* Tectonic stress field of North America and relative plate motions // In: Slemmons D.B., Engdahl E.R., Zoback M.D., Blackwell D.D. (Ed.). Neotectonics of North America Decade Map Volume I. Geol. Soc. Am. Boulder. Colorado. 1991. P. 339-366.

158. *Zoback M.L., Zoback M.D.* Tectonic stress field of the conterminous United States // In: Pakiser L.C., Mooney W.D. (Ed.). Geophysical Framework of the Continental United States. Geol. Soc. Am. Mem. 172. Boulder, Colorado. 1989. P. 523-539.

159. Zoback M.L., Zoback M.D., Adams J., Assumpção M., Bell S., Bergman E.A., BlümlingP., Brereton N.R., Denham D., Ding J., Fuchs K., Gay N., Gregersen S., Gupta H.K., Gvishiani A., Jacob K., Klein R., Knoll P., Magee M., Mercier J.L., Müller B.C., Paquin C., Rajendran K., Stephansson O., Suarez G., Suter M., Udías A., Xu Z.H., Zhizhin M. Global patterns of tectonic stress // Nature. 1989. V. 341. P. 291–298.
160. *Zuber M.T.* Compression of Oceanic Lithosphere: An Analysis of Intraplate Deformation in the Central Indian Basin // J. Geophys. Res. 1987. V. 92 (B6). P. 4817-4825.

161. *Zuber M.T., Bechtel T.D., Forsyth D.W.* Effective Elastic Thickness of the Lithosphere and Mechanisms of Isostatic Compensation in Australia // J. Geophys. Res. 1989. V. 94 (B7). P. 9353-9367.