Alexandre Koptev

alexander.koptev@gfz-potsdam.de

http://www.koptev.1gb.ru

né le 17 juin 1985 à Riazan (Russie)

Langues : Russe – maternelle, Anglais – courant, Français – courant, Allemand – avancé.

RECHERCHE INTÉRÊT

Modélisation numérique 3D de l'impact de la rhéologie de la lithosphère sur les processus tectoniques et interactions manteau-lithosphère.

FORMATION

2002-2006 – Faculté de géologie, Université d'Etat Lomonossov de Moscou, diplôme de licence en géologie ;

2006-2008 – Faculté de géologie, Université d'Etat Lomonossov de Moscou, diplôme de master en géologie ;

2008-2011 – Faculté de géologie, Université d'Etat Lomonossov de Moscou, doctorant. Titre de thèse : «Modélisation numérique du champ des contraintes dans la lithosphère» ;

2022 – Département des géosciences, Université de Tübingen, habilitation en géologie, géophysique et géodynamique. Titre de thèse : «Impact de la lithosphère rhéologiquement stratifiée sur la géodynamique de divergence et de convergence : aperçus de la modélisation thermomécanique».

EXPÉRIENCE PROFESSIONNELLE

2006-2011 – Faculté de géologie, Université d'Etat Lomonossov de Moscou, Moscou, Russie ; le développement du logiciel, ingénieur de recherche ;

2012 – SARL «GeoGrid», Moscou, Russie ; la modélisation des systèmes de pétrole, chef géologue ;

2013-2017 – Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie, Paris, France ; la modélisation numérique en géodynamique, post-doc ;

2013-2017 – Département des géosciences, Université de Tübingen, Tübingen, Allemagne ; la modélisation numérique en géodynamique et géomorphologie, post-doc ;

Depuis 2022 – GFZ German Research Centre for Geosciences, Potsdam, Allemagne ; la modélisation numérique en géodynamique et géomorphologie, postdoc.

ENSEIGNEMENT

À l'Université d'Etat Lomonossov de Moscou :

- 1. «Géologie générale» (2007-2009);
- 2. «Géotectonique» (2008-2009);
- 3. «Notions de base de la modélisation mathématique» (2006-2011) ;
- 4. «Géodynamique» (2007-2011);
- 5. «Bases de la programmation» (2010);
- 6. «Excursions géologiques sur le terrain» (2007-2009).

À l'Université de Tübingen :

- 1. «Modélisation numérique en géodynamique» (2020-21) ;
- 2. «Tectonique appliquée et processus de surface» (2020-21);
- 3. «Introduction aux processus de surface de la Terre» (2019-24).

COMPETENCES PROFESSIONELES

Modélisation numérique des processus géodynamiques et géomorphologiques, programmation, modélisation des systèmes de pétrole, géologie de terrain.

PRINCIPALES PUBLICATIONS

Koptev A., Cloetingh S., Kovács I., Gerya T., Ehlers T.A. (2021). Controls by rheological structure of the lithosphere on the temporal evolution of continental magmatism: Inferences from the Pannonian Basin system. // Earth and Planetary Science Letters, 565, 116925.

Koptev A., Beniest A., Gerya T., Ehlers T.A., Jolivet L., Leroy S. (2019). Plume-induced breakup of a subducting plate: Microcontinent formation without cessation of the subduction process. // *Geophysical Research Letters*, 46(7), 3663-3675.

Koptev A., Gerya T., Calais E., Leroy S., Burov E. (2018). Afar triple junction triggered by plume-assisted bi-directional continental break-up. // Scientific Reports, 8 (1), 14742.

Koptev A., Calais E., Burov E., Leroy S., Gerya T. (2018). Along-axis variations of rift width in a coupled lithosphere-mantle system, Application to East Africa. // *Geophysical Research Letters*, 45 (11), 5362-5370.

Koptev A., Burov E., Gerya T., Le Pourhiet L., Leroy S., Calais E., Jolivet L. (2018). Plume-induced continental rifting and break-up in ultra-slow extension context: Insights from 3D numerical modeling. // *Tectonophysics*, 746, 121-137.

Koptev A., Cloetingh S., Burov E., François T., Gerya T. (2017). Long-distance impact of Iceland plume on Norway's rifted margin. // *Scientific Reports*, 7 (1), 10408.

Koptev A., Calais E., Burov E., Leroy S., Gerya T. (2015). Dual continental rift systems generated by plume-lithosphere interaction. // *Nature Geoscience*, 8 (5), 388-392.